

CHIMERIX

INVESTOR UPDATE

OCTOBER 17, 2018

Forward-Looking Statements

These slides and the accompanying oral presentation contain forward-looking statements and information within the meaning of the Private Securities Litigation Reform Act of 1995 that are subject to risks, uncertainties and other factors, including the possibility that there may not be a viable continued development path for brincidofovir, that any clinical trials we may conduct will not demonstrate adequate efficacy and safety of brincidofovir, that the FDA and other regulatory authorities may not approve brincidofovir or brincidofovir-based regimens, and that marketing approvals, if granted, may have significant limitations on their use. As a result, brincidofovir may never be successfully commercialized. In addition, Chimerix may be unable to file for regulatory approval for brincidofovir with other regulatory authorities. Similar risks and uncertainties apply to our development of CMX521. These risks, uncertainties and other factors could cause actual results to differ materially from those referred to in the forward-looking statements. The reader is cautioned not to rely on these forward-looking statements. These and other risks are described in detail in Chimerix's Quarterly Report on Form 10-Q for the quarter ended June 30, 2018 and other documents subsequently filed with or furnished to the U.S. Securities and Exchange Commission. All forward-looking statements are based on information currently available to Chimerix, and Chimerix assumes no obligation to update any such forward-looking statements.

Chimerix Investor Update: October 17, 2018

- M. Michelle Berrey, MD, MPH, President & CEO
 - Welcome and program overview
- Roy F. Chemaly, MD, MPH, Professor, Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, TX
 - Why do we need a broad-spectrum antiviral?
- Garrett Nichols, MD, MS, Chief Medical Officer
 - AdAPT, AdVance, and BCV's utility in adenovirus beyond transplant
 - IV BCV for BK and HHV6
- Kevin Reeves, VP of Commercial
 - Growing market opportunities for oral and IV BCV
- Randall Lanier, PhD, Chief Science Officer
 - Norovirus clinical study update

CHIMERIX

M. MICHELLE BERREY, MD, MPH CORPORATE UPDATE

OCTOBER 17, 2018

Why Do We Believe in BCV?

- Over 1500 patients have been treated with brinci for life-threatening adenovirus infection
- High number of requests for BCV via EIND process
- BCV has been requested and administered for viral infections caused by nearly all dsDNA viruses
- Many transplant and ID physicians currently consider BCV their treatment of choice for adenovirus in transplant recipients and other patients
- We worked closely with European regulators to design a small, prospectively randomized study that gives us the opportunity to have short-course oral BCV reflected in our first indication
- Image: and now we are increasingly optimistic that AdV AAUC₀₋₁₆ could be accepted as a relevant surrogate marker for AdAPT, providing a path to accelerated approval

Physicians Continue to Request BCV for Many Diseases

Adenovirus Smallpox/Vaccinia **BKV: Hemorrhagic Cystitis BKV: BKVAN (Kidney Tx)** HHV6: Encephalitis **CMV:** Enteritis CMV: Encephalitis **HSV** Encephalitis **DRESS** Syndrome

HPV: Recurrent Respiratory **Papillomatosis (RRP)** Glioblastoma **CMV** Encephalitis HPV+ Head-and-Neck CA HHV6: Alzheimer's Dz Viral Myocarditis **JCV: PML (Progressive** multifocal leukoencephalopathy)

Cowpox/Monkeypox

EBV: Burkitt's Lymphoma Viral Encephalitis MCV: Merkel Cell Virus EBV: Post-transplant Lymphoproliferative Disease (PTLD) Radiation sensitizer (option for renal insuff. pts) Parvovirus

BCV Has Been Used to Treat Multiple dsDNA Viral Infections

Viral Family	Virus	BCV	Clinical Efficacy Demonstrated in
Adenovirus	Adenovirus (AdV)	0.02	1500+ patients w AdV have received BCV
Polyoma	BK Virus (BKV)	0.13	New data in animal model confirms BCV activity (to be presented at Kidney Week), Ph 2 dose-ranging in planning
	JC Virus (JCV)	0.045	Oral BCV has been used in ~36 pts with PML or JC viremia IV BCV achieves higher CNS penetration
Papilloma	Human Papillomavirus (HPV)	17	BCV used in patients in expanded access trials
Herpes Viruses	Herpes Simplex Virus 1	0.01	BCV cleared acyclovir-resistant HSV-1 after HCT ¹
	Herpes Simplex Virus 2	0.02	BCV cleared acyclovir-resistant HSV-2 after HCT ²
	Varicella Zoster Virus (VZV, HHV3)	0.0004	BCV demonstrated to prevent shingles post HCT ³
	Epstein-Barr Virus (EBV, HHV4)	0.03	Anecdotal use in post-HCT viremia and disease
	Cytomegalovirus (CMV, HHV5)	0.001	Antiviral activity demonstrated in Ph 2 ⁴ and Ph 3 ⁵ trials
	Human Herpesvirus 6	0.003	Prevention of viremia and disease in subset analysis of Ph 3 HCT
	Human Herpesvirus 8	0.02	
Pox	Variola	0.1	Ongoing pivotal animal studies in collaboration with BARDA
	Vaccinia	0.8	Disseminated vaccinia cleared with BCV treatment ⁶

1. Voight S et al. Transpl Infect Dis 2016;18:791–794

2. El-Haddad D et al. Antiviral Res. 2016;134:58-62.

3. Lee YJ et al. Transpl Infect Dis. 2018 Aug 18:e12977. doi: 10.1111/tid.12977. [Epub ahead of print]

5. Marty FM et al. Biol Blood Marrow Transplant 2016;22(3):S23.

6. Lederman E et al. J Infect Dis. 2012;206:1372-85.

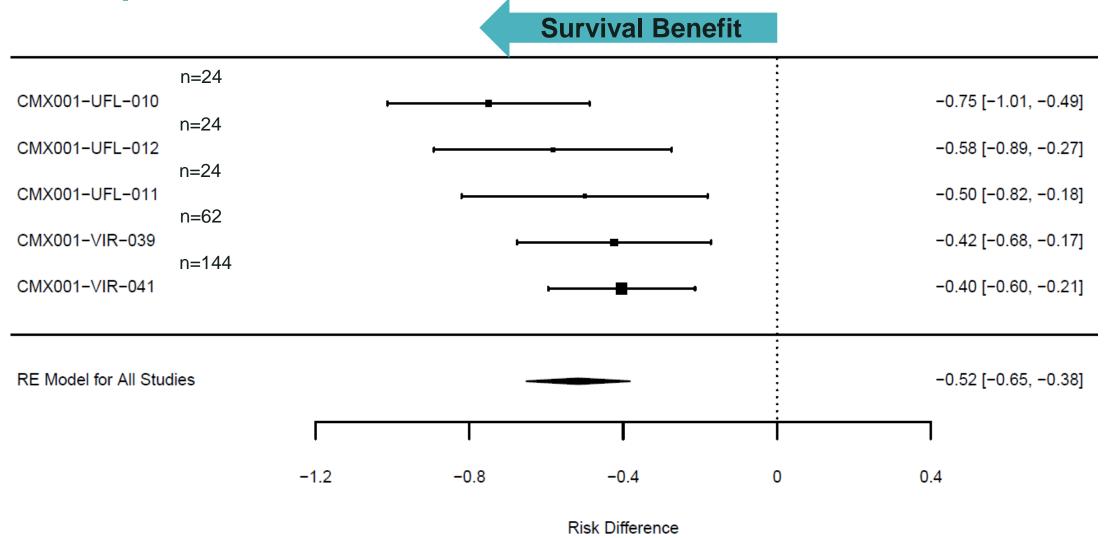
AdAPT: Positive Data Could Support Approval in the US

AdV AAUC ₀₋₁₆	Survival	MAA	NDA
BCV superior	Numeric advantage	File	Accelerated Approval
BCV superior	Statistical advantage	File	Submit for full approval

If AdAPT shows BCV results in >1 log difference in AdV AAUC₀₋₁₆, based on the data from AdVance, there is an increased likelihood of improved overall survival

- FDA, under Commissioner Gottlieb, is looking to accelerate approvals of life-saving medicines, including new opportunities for sponsors to request Type C meetings in order to discuss surrogate markers
- Type C Meetings provide us with an opportunity to review AdVance and other independent data sets for the required Briefing Package – a compilation of all relevant materials that support the consideration of a new surrogate marker

Development and Procurement of BCV for Smallpox

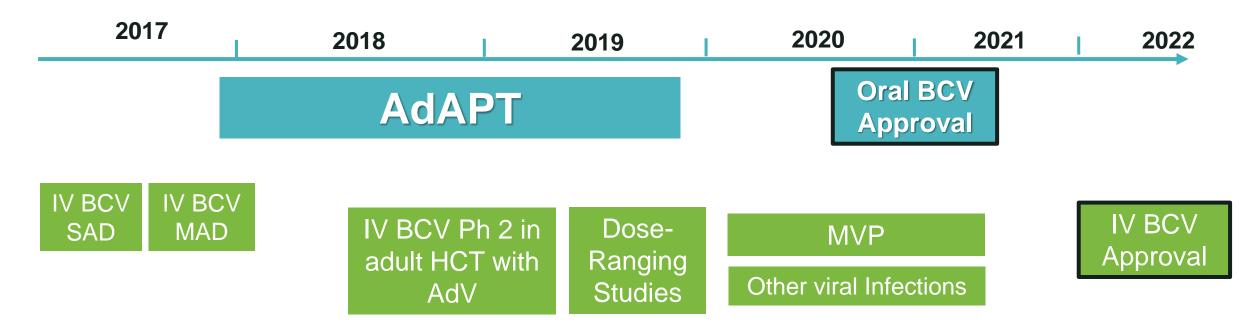

- > **Development of oral BCV** in two animal models is progressing in two final studies:
 - 1. **Rabbitpox** virus model: Adjunct pivotal cohort study now underway. Data expected in early 2019. Prior pivotal study demonstrated 100% survival in animals that received immediate treatment with brincidofovir.
 - 2. Mouse pox / ectromelia replicates respiratory infection route of human smallpox infection. We anticipate pivotal mouse pox study will be completed in 2019.

FY19 Funding of \$611M is now approved for BARDA together with PAHPA reauthorization

- Multi-year funding for PAHPA (Pandemic All-Hazards Preparedness Act) has passed the House and is headed to Senate
 - **\$7.1B** for Special Reserve Fund for FY2020-2028
- With animal data in-hand in 2019, clarity on a procurement contract could occur

Brincidofovir has Demonstrated Survival Benefit in Multiple Rabbitpox Studies

CHIMERIX


Oct 9th Blue Ribbon Study Panel on Biodefense Preparedness

"Most threats we face are global in nature. They're emerging diseases in far-away places. They are nation-state actors. And we have this **new** phenomenon of manipulation of synthetic biology that can pop up virtually anywhere. Intermittent or oneyear federal funding for biodefense won't do the trick... five- or 10-year programs are going to be needed." Dr. Scott Lillibridge, the US's first bioterrorism preparedness director at CDC in 1999. (emphasis added)

Anticipated Brincidofovir Milestones and Regulatory Decisions

- Oral short-course BCV for AdV in AdAPT expected to be enrolled in 2019
- Open-label Ph 2 IV BCV studies in adult patients expected to provide data in late 2018/early 2019
- IV BCV dose-ranging expected to be conducted in other serious viral infections: BKV & HHV-6
- IV BCV may allow longer duration dosing for prevention of multi-viral infection

CMRX: Developing Solutions for Immunocompromised Patients

- Experienced and committed management team with proven track records developing first-in-class antivirals and first-in-indication commercial launches
- Proprietary lipid-conjugate technology and large chemical library has led to two unpartnered and one partnered clinical-stage compounds
 - Brincidofovir (CMX001, BCV): first broad-spectrum antiviral in development
 - CMX521: investigational nucleoside for norovirus
 - CMX157: licensed to ContraVir for hepatitis B
- Well-capitalized to achieve planned milestones with \$196M at the end of 2Q 2018
- Patent protection into 2034 for brincidofovir and 2036 for CMX521

VIRAL INFECTIONS IN IMMUNOCOMPROMISED PATIENTS: WHY DO WE NEED A BROAD-SPECTRUM ANTIVIRAL?

Roy F. Chemaly, MD, MPH, FACP, FIDSA Professor of Medicine Director, Infection Control Director, Clinical Virology Research Program Department of Infectious Diseases, Infection Control and Employee Health

> MDAnderson Cancer Center

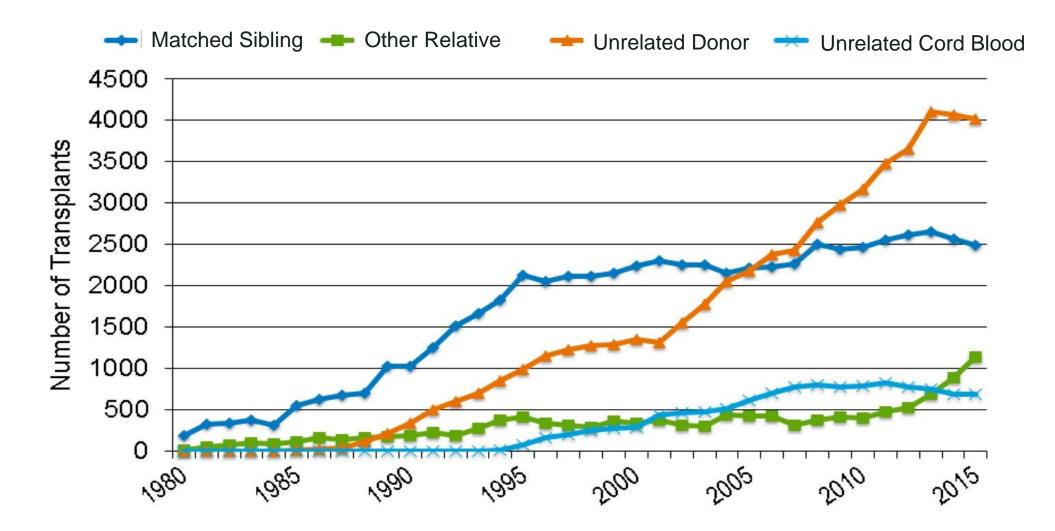
Making Cancer History*

Disclosures

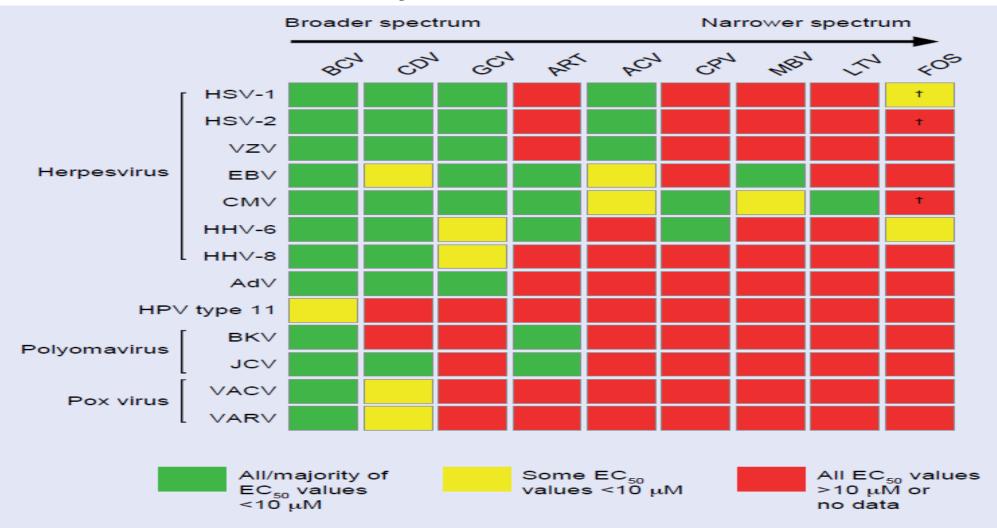
- Research grants paid to my institution:
 - Chimerix, Merck, Novartis, Shire, Aicuris, Oxford Immunotec
- Consultancy / speaker fee:
 - Chimerix, Merck, Shire, Oxford Immunotec, Astellas

Why Do We Need a Broad-Spectrum Antiviral?

- A recipient of a hematopoeitic cell transplant (HCT) faces a 1-in-5 risk of mortality from infection in the first year after transplant¹
 - High-risk HCT is the most rapidly growing segment of transplant
 - These patients receive more intense immunosuppression (ex vivo TCD, ATG, alemtuzumab, post transplant cyclophosphamide to prevent GVHD)
 - >90% of allo-HCT recipients reactivate 1 or more viruses
- In addition to transplant recipients, there is a growing population of patients at risk of viral diseases – patients on biologics, CAR T cell, or lifetime anticancer therapies
 - Ex: JC virus and PML reported in patients on long-term biologics
- The increasing association of viruses and some cancers may provide an opportunity for intervention at an earlier stage of disease

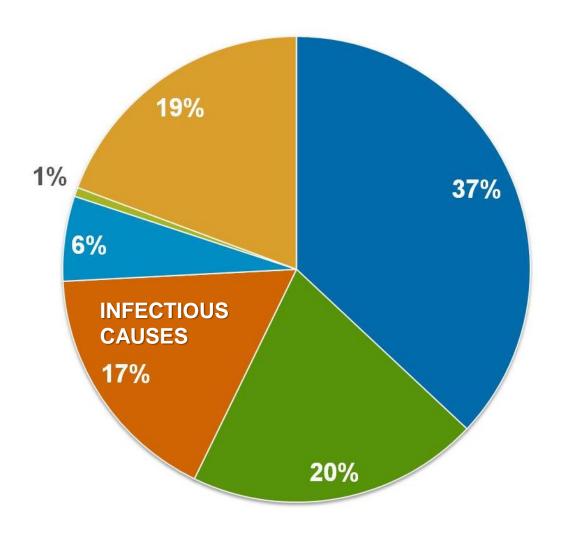

Hematopoietic Stem Cell Transplantation (HCT): A Primer

- Allogeneic HCT (allo-HCT): infusion of donor stem cells
 - Unrelated cord blood HCT (donor is immune naïve infant)
 - Haploidentical HCT (donor is a parent half genetic match)
 - Mismatched unrelated donor HCT (moderate genetic match)
 - Matched unrelated donor HCT (high genetic match)
 - Matched related sibling allo-HCT (highest genetic match)

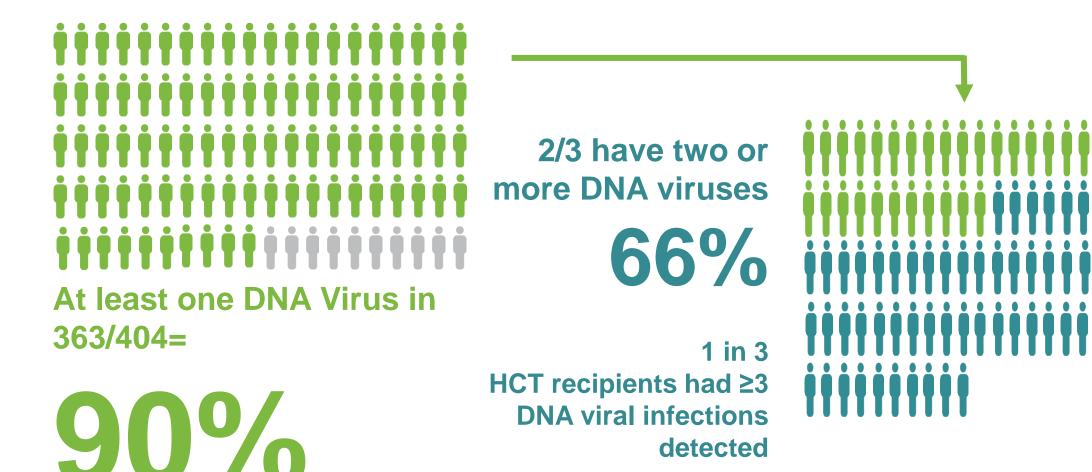

- Increasing risk of GVHD
- Increasing
 immunosuppression
- Increasing risk for viral infections

Autologous HCT (auto-HCT): infusion of patient's own stem cells

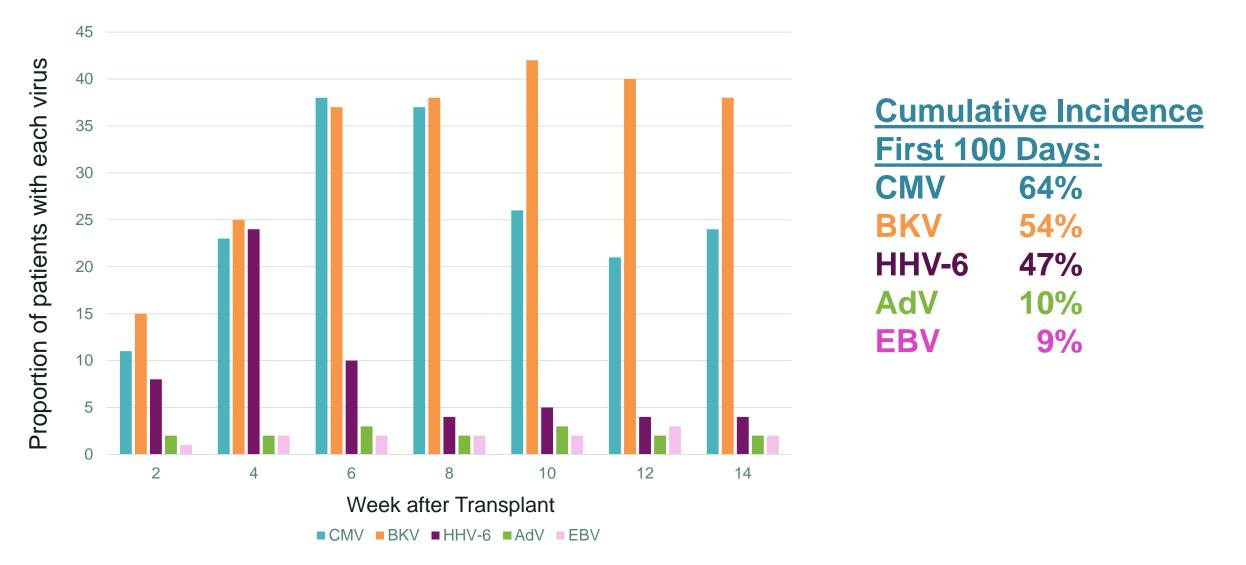
Increasing Rate of High Risk Allo-HCT is Driving Growth



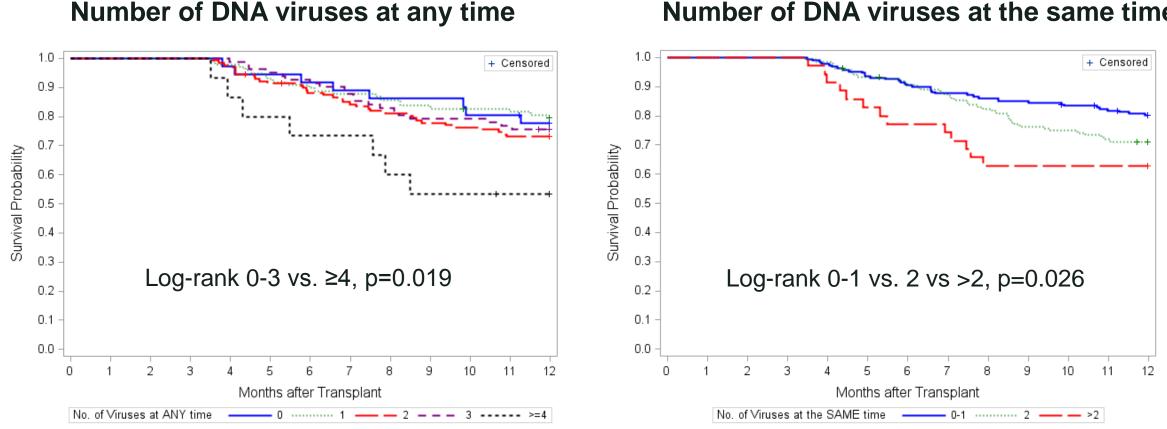
BCV: Broad Spectrum and High Potency vs. Other Antivirals Results from a systematic literature review


[†]Approved for treatment of CMV retinitis in patients with AIDS and treatment of refractory HSV infections in immunocompromised patients.

Infections and GVHD are the Most Frequent Causes of Non-Relapse Mortality After Bone Marrow Transplantation


- Primary Disease
- GVHD
- Infection: Viral, Bacterial, Fungal, Parasitic
- Organ Failure
- Second Malignancy
- Other

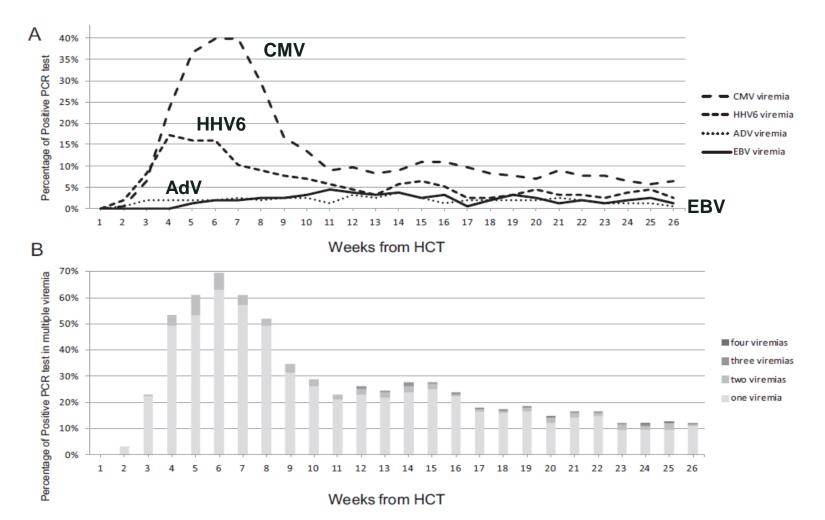
A Majority of HCT recipients Have 2 or More Viral Infections



detected

Multiple Viral Infections Reactivate and Persist After HCT

More DNA Viruses Reactivating = Higher Mortality


Number of DNA viruses at the same time

Cumulative viral load AUC was associated with mortality, after adjusting for immune reconstitution

Multi-Viral Infections Are Common after T-cell Depletion

Yao-Ting Huang ¹, Seong Jin Kim ¹, Yeon Joo Lee ^{1,2}, Daniel Burack ¹, Paige Nichols ¹, Molly Maloy ³, Miguel-Angel Perales ^{2,3}, Sergio A. Giralt ^{2,3}, Ann A. Jakubowski ^{2,3}, Genovefa A. Papanicolaou ^{1,2,*}

Biol Blood Marrow Transplant 23 (2017) 1759-1766

24

Management of Multi-Viral Infections After HCT: Prophylaxis vs. Pre-emptive Treatment

Antiviral drugs	<u>Target</u>	<u>Prophylaxis</u>	
Ganciclovir/VGCV	Herpesviruses	Effective but toxic (myelotoxicity)	
Foscarnet	Herpesviruses	No proven prophylaxis efficacy	
		Renal Toxicity	
 Brincidofovir 	Herpesviruses, ADV, BKV, HPV	Oral BCV under study as preemptive therapy for AdV to decrease GI AEs; IV BCV in Ph 2	

Cellular therapy

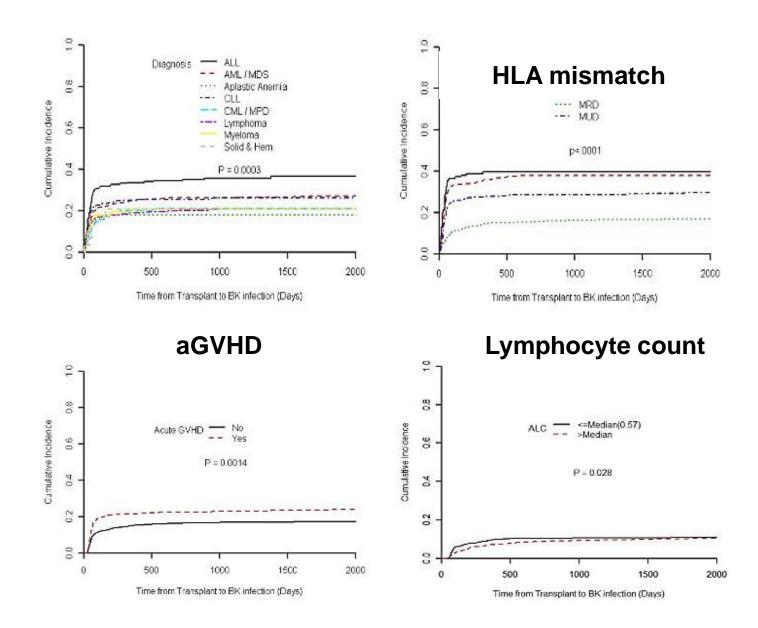
- Virus-specific T cells CMV, EBV, ADV, BKV No controlled data
- NK cells

BK VIRUS

BK Virus: Unmet Need in HCT and Kidney Transplant

BKV Hemorrhagic Cystitis (HC)

- Clinical symptoms/signs of cystitis, such as dysuria, abdominal pain
- Hematuria Grade ≥2
- BK Virus in urine > 7 log_{10} copies /mL

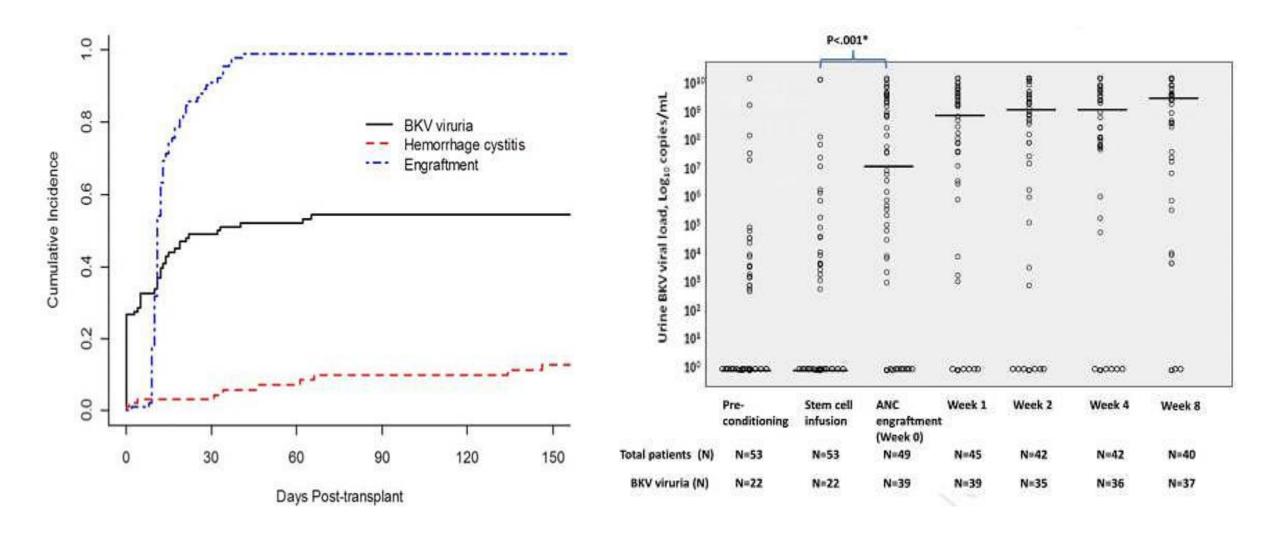

BKV viremia of >3–4 log₁₀ copies/mL frequently reported during HC

BKV Nephritis

- BK viremia > $6 \log_{10}$ copies /mL
- Biopsy showing positive SV40 staining
- Cytopathic changes of tubular epithelial cells

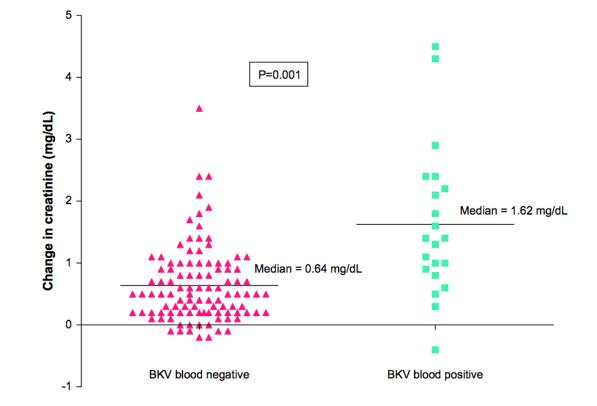
BKV HC Occurs in 10-25% of HCT

Setting	Cumulative incidence, median (range)	No. of patients
Allo-HSCT	13% (7–25)	2096
Haplo-HCT with post-transplant cyclophosphamide exposure	24.5% (19–54)	179
Auto-HCT	0	118
Adults	16% (7–54)	1413
Children	18% (8–25)	724
Adult and pediatric population	16% (13–19)	206



Risk Factors for BK infection

- Myeloablative conditioning (busulfan)
- Cord blood transplant
- CMV infection
- High BKV antibody Pre HCT

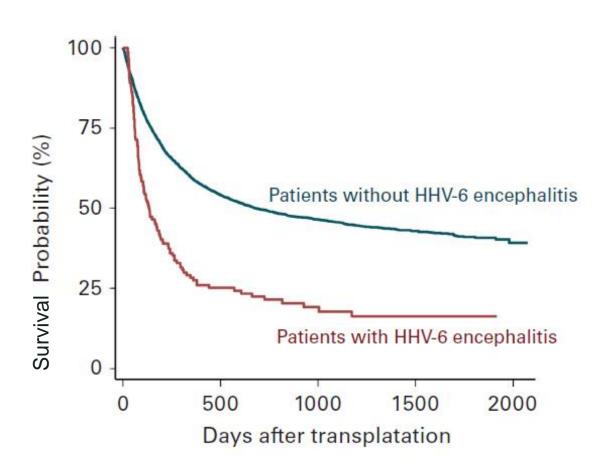

Abudayyeh A Transpl Infect Dis. 2017;19; Rorije NMG Biol Blood Marrow transplant 2014;20:564

BKV Viruria Is Common and Persistent after HCT

In Allo-HCT, BK Viremia Leads to Renal Dysfunction

- BK viremia in allo-HCT
 - Associated with largest rise in SCr
 - BK viruria precedes viremia

O'Donnell P et al. Biol Blood Marrow Transplant, 2009.


BK Viruria Is Associated with Lower Overall Survival after Allo-HCT

Predictors of mortality	HR (95% CI)	
Kidney dysfunction	4.26 (3.69–4.91)	
BKV infection	1.27 (1.11–1.44)	
High BK viral load 10-fold increase	1.03 (1.02–1.05)	
PLT count >50,000	0.47 (0.40–0.54)	
Increase in ALC by a factor of two	0.62 (0.60–0.65)	

Abudayyeh A et al. Am J Transplant 2016 May;16(5):1492-502.

HHV6 Reactivates Frequently post-HCT

- HHV6 is common: 99% prevalence in western populations
- Reactivation is much more common in cord blood and haplo-HCT
- End-organ disease including encephalitis, graft failure, delayed immune reconstitution, significant impact on memory, are currently underdiagnosed
- HHV6 encephalitis is associated with mortality and long term sequelae in survivors

Case Review of Fatal HHV6 Post-HCT

The NEW ENGLAND JOURNAL of MEDICINE

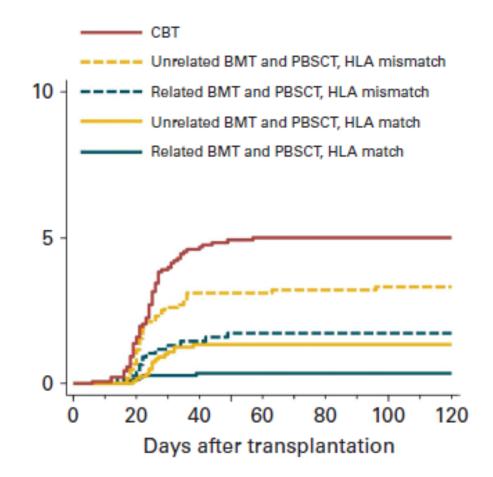
CASE RECORDS of the MASSACHUSETTS GENERAL HOSPITAL

Founded by Richard C. Cabot Eric S. Rosenberg, M.D., Editor Virginia M. Pierce, M.D., David M. Dudzinski, M.D., Meridale V. Baggett, M.D., Dennis C. Sgroi, M.D., Jo-Anne O. Shepard, M.D., Associate Editors Allison R. Bond, M.D., Case Records Editorial Fellow Emily K. McDonald, Sally H. Ebeling, Production Editors

Case 5-2018: A 63-Year-Old Man with Confusion after Stem-Cell Transplantation

Areej R. El-Jawahri, M.D., Pamela W. Schaefer, M.D., Joseph B. El Khoury, M.D., and Maria Martinez-Lage, M.D.

N ENGLJ MED 378;7 NEJM.ORG FEBRUARY 15, 2018


 Recent NEJM case record of a fatal case of post-HCT HHV6 meningoencephalitis, myocarditis, and interstitial nephritis

Management of HHV-6 after HCT is Suboptimal

- Retrospective study of 145 Japanese HCT patients with HHV6 encephalitis showed:¹
 - 71% response to IV GCV, 84% to FOS
 - 57% had persistent neuropsych sequelae
 - 100 day survival: 58% with encephalitis, 81% without
- Foscarnet prophylaxis from day 7-27:²
 - Reduced HHV6 viremia (>10⁴ c/ml) from 57% in historic controls to 18% (P<0.001)
 - Did not reduce HHV6 encephalitis (12% with FOS vs. 5% in historic controls, P=0.14)
 - Concluded that new antiviral agents with better CNS penetration needed

Cumulative incidence of HHV6 encephalitis after HCT in Japan

HHV6 Reactivation Negatively Impact T-cell reconstitution

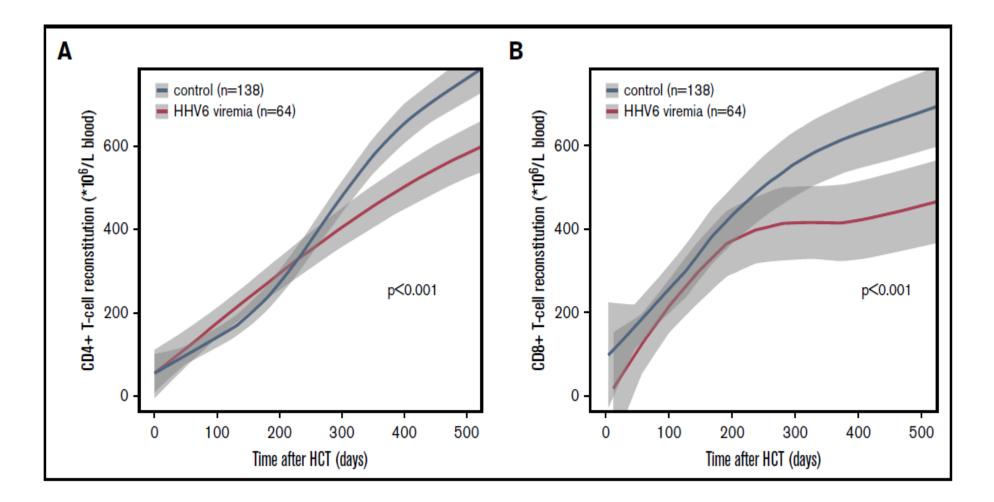
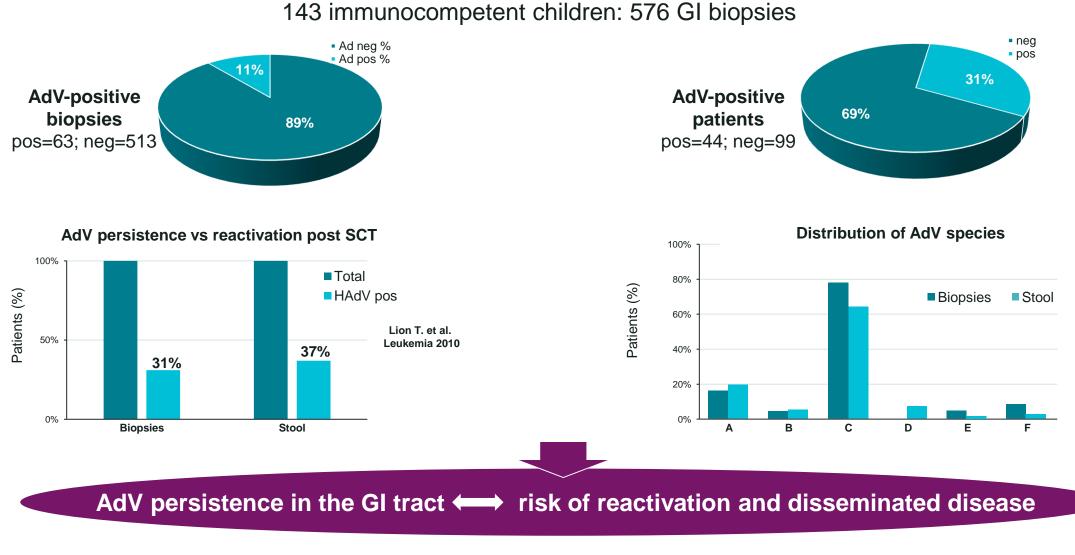


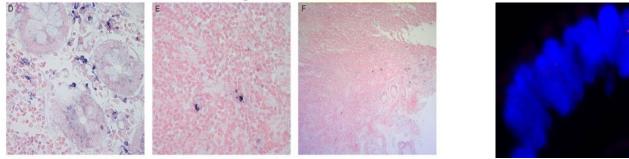
Image: Sources 27 FEBRUARY 2018 · VOLUME 2, NUMBER 4

Summary


- Multi-viral infections are common in HCT recipients
- They occur more commonly in high-risk patients (cord blood, haplo, GVHD)
- Multi-viral infection is associated with significant disease and higher mortality
- Drugs and immunotherapies under development could be used to prevent or treat multi-viral infections
 - Brincidofovir:
 - AdAPT study of short-course oral brinci currently enrolling for AdV viremia in children
 - IV BCV in Phase 2: adult HCT recipients with AdV viremia
 - Cellular therapies also under development, but many shortcomings

W. Garrett Nichols, MD, MS Chief Medical Officer

AdV Persists in the Gut of Immunocompetent Children......

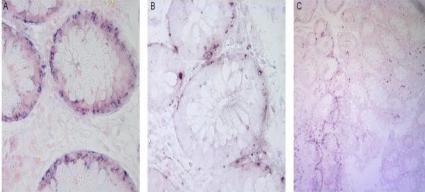


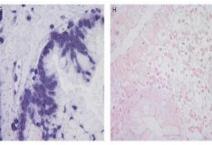
Kosulin K et al. Clin Microbiol Infect 2016, 22(4):381.e1-8

CHIMERIX

AdV Persists in the Gut of Children..... and Reactivates from the Gut after Transplant

Persistent AdV in gut of immunocompetent children




Oral BCV provides targeted therapy for AdV after pediatric HCT:

- Delivers drug to gut (source of viral replication in pediatric HCT patients)
- 100-fold greater potency vs. IV CDV

Reactivated AdV post HCT

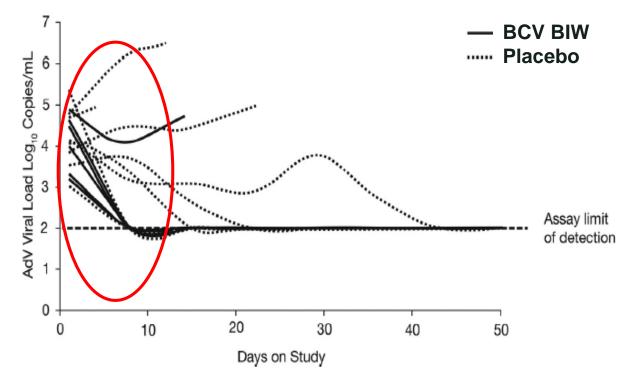
positive control

control neg

negative control

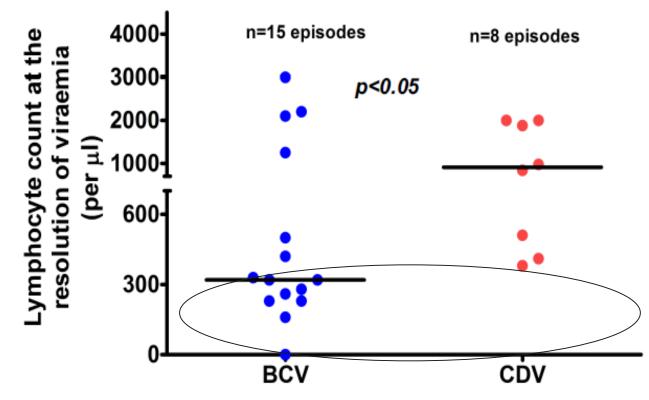
Kosulin K et al. Clin Microbiol Infect 2016, 22(4):381.e1-8

Short-course Oral BCV for Adenovirus: Maximizing the Probability of Success in AdAPT


- Rapid identification and treatment of AdV viremia is key:
 - Screening must be conducted at least weekly
 - Intervention with oral BCV as quickly as possible after confirmed viremia enables rapid clearance of AdV from plasma
 - Rapid AdV clearance (week 4) was associated with improved survival in AdVise
- UK cohort: oral BCV had greater virologic effect than IV cidofovir*
 - Robust virologic responses more common with BCV, particularly in first 100 days after HCT
 - Oral BCV was more likely to clear plasma in patients without immune reconstitution
- BCV has demonstrated hematologic safety in early transplant period and has avoided cidofovir-like nephrotoxicity

CHIMERIX

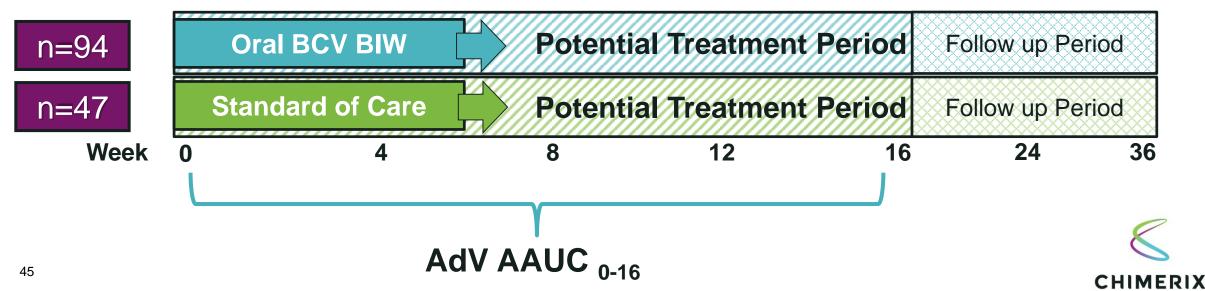
Short course oral BCV should improve outcomes compared to off-label IV cidofovir


Phase 2 in Asymptomatic AdV: Oral BCV BIW Cleared Plasma in 1 Week if AdV >1000 c/mL

- Study 202 randomized allo-HCT recipients with asymptomatic AdV viremia to oral BCV twice weekly, oral BCV once weekly, or placebo (n=48)
- Learnings included:
 - Low risk (matched sibling recipients of T-cell replete allografts, with AdV < 1000 c/mL) cleared AdV spontaneously
 - Oral BCV twice weekly better than weekly
 - Consistent and more rapid clearance
 - Trend toward improved mortality (vs. QW and PBO)
- AdAPT will enroll high-risk subjects with AdV viremia > 1000 c/mL

BCV Clears AdV from Plasma with or without Immune Function, While Cidofovir Requires Immune Assistance

- Immune reconstitution: absolute lymphocyte count >300 cells/uL
- T-cell depleted allo-HCT pts have delayed immune reconstitution ~ day 60 or beyond


Lymphocyte counts were significantly lower at time of viremia clearance with Oral BCV than with IV CDV

AdAPT: Adenovirus after Allogeneic Pediatric Transplantation

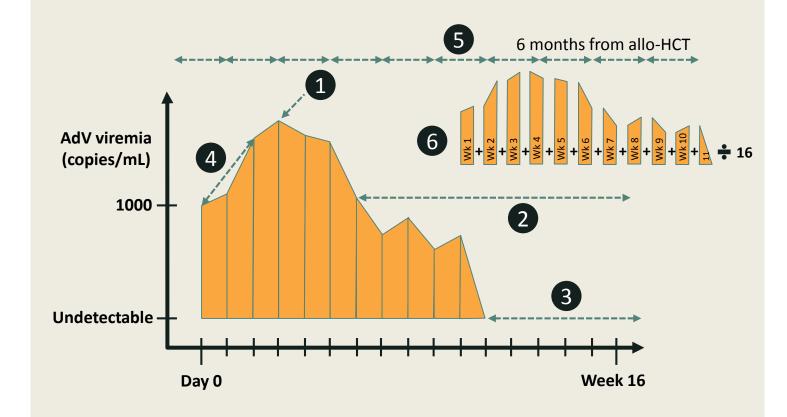
- Open label, comparative study of oral BCV vs. standard of care (SoC) in AdV viremia
 - Pediatric T-cell depleted allo-HCT recipients in 1st 100 days of HCT with AdV ≥1000 copies/mL
- Short course pre-emptive therapy
 - BCV (or SoC) administered until AdV is cleared from plasma
- Primary endpoint: AdV Average Area Under the Curve over 16 weeks (AdV AAUC₀₋₁₆)
 - Powered to detect 0.6 \log_{10} difference in AdV AAUC₀₋₁₆

Small study: N=141 (2:1 randomization)

Multiple Measures of AdV Viral Load Are Associated with All-Cause Mortality

1 Peak AdV viremia:

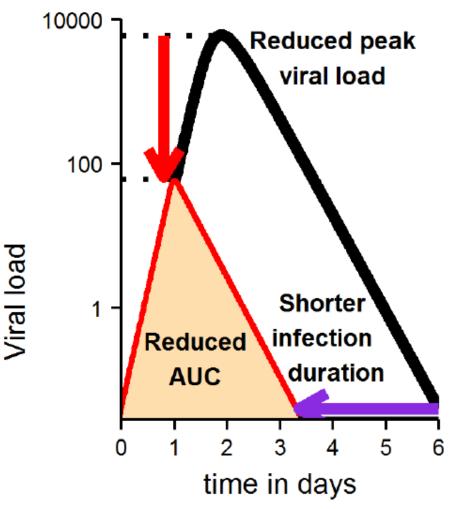
Peak Log₁₀ AdV viremia


- 2 Days AdV viremia <1000 copies/mL: Number of days AdV viremia <1000 c/mL
- **3 Days undetectable AdV viremia:** Number of days AdV viremia <LOD
- 4 2-week change in AdV viremia: Change in log₁₀ AdV in 2 wks following first AdV viremia ≥1000 copies/mL
- **5** AdV viremia over time:

Highest log₁₀ AdV viremia in 15-day time windows over 6 months following allo-HCT as a time dependent covariate

AdV AAUC₀₋₁₆:

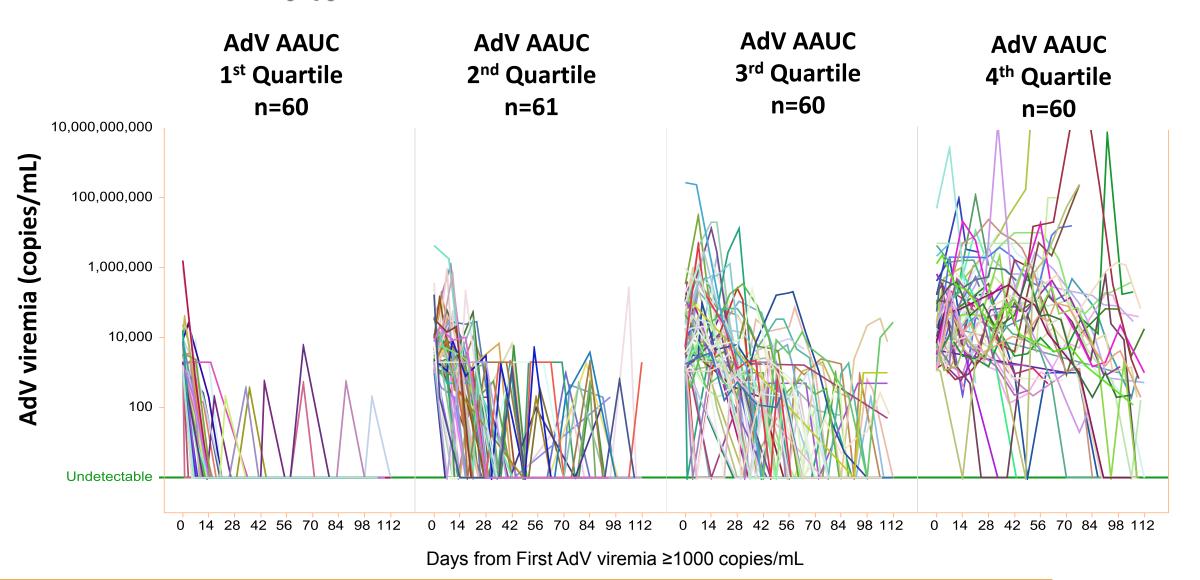
6


 Log_{10} of the time-averaged area under the curve (AdV AAUC)

All measures were over the 16 weeks following first AdV viremia ≥1000 copies/mL, except 2-week change in AdV viremia, and AdV viremia over time

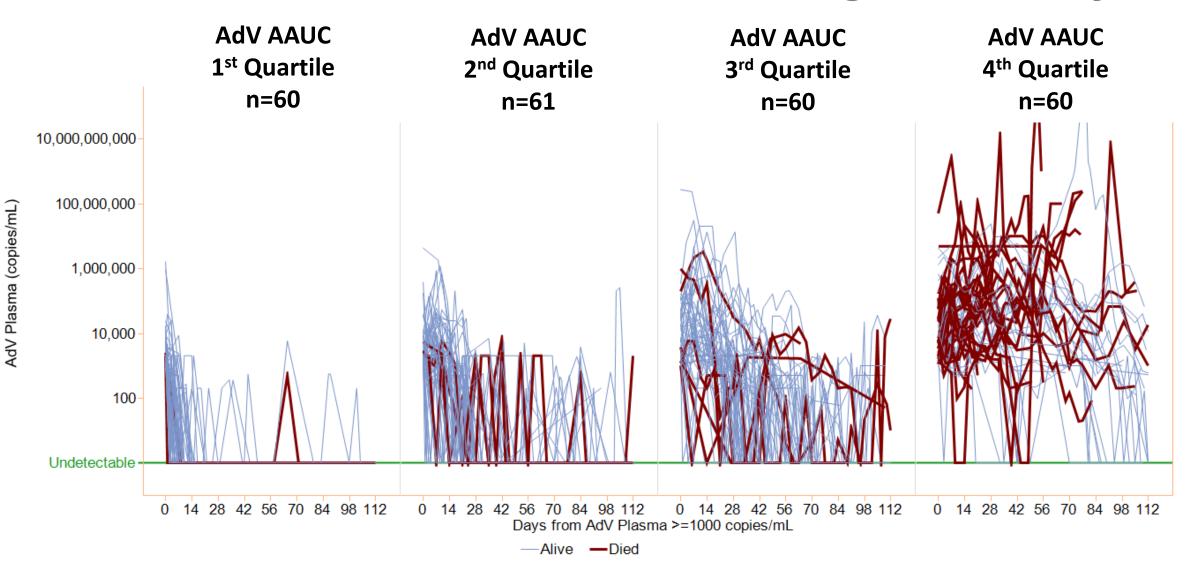
Measuring Antiviral Activity: Adenovirus Area Under the Curve (AUC)

- Antivirals for acute infections have two major impacts:
 - Decrease peak viral load
 - Shorten time to viral clearance
- Both parameters are captured when measuring viral area under curve (AUC)
- Impact is highest when applied early in the disease course (before peak viral load)
- Assessing viral load over time is most sensitive way to discriminate efficacy between two antivirals

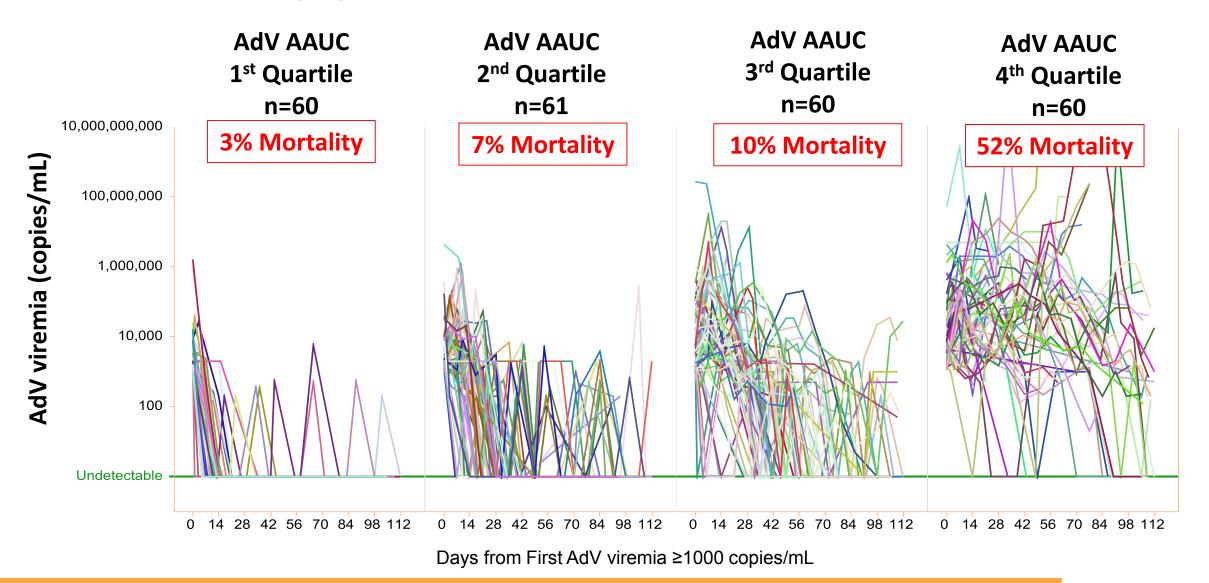

AdV AAUC₀₋₁₆ Remains the Most Predictive Virologic Measure for All-Cause Mortality

(95% CI)		Peak AdV viremia	Days AdV viremia <1000 c/mL	Days with undetectable AdV viremia	2-week change in AdV viremia		AdV AAUC ₀₋₁₆	
Hazard for all-cause mortality		1.31	0.96	0.96	1.24	1.37	1.91	
		(1.13 - 1.53)	(0.95 - 0.97)	(0.95 - 0.97)	(1.04 - 1.47)	(1.22 - 1.55)	(1.57 - 2.32)	
Lymphocyte count	≥ 900	1.00	1.00	1.00	1.00	1.00	1.00	
	300-899	1.88 [(0.47 - 7.53)	1.82 (0.45 - 7.35)	1.71 (0.43 - 6.89)	1.80 (0.45 - 7.18)	1.64 (0.41 - 6.50)	2.19 (0.54 - 8.86)	
	<300	7.81 (2.22 - 27.46)	5.20 (1.48 - 18.32)	5.09 (1.44 - 17.96)	7.97 (2.27 - 27.95)	4.87 (1.35 - 17.52)	6.82 (1.92 - 24.22)	
Renal	No	1.00	1.00	1.00	1.00	1.00	1.00	
replacement therapy	Yes	13.10	5.09	6.12	14.56	6.90	5.91	
	165	(5.54 - 30.97)	(1.85 - 14.02)	(2.21 - 16.98)	(6.30 - 33.67)	(2.74 - 17.39)	(2.38 - 14.72)	
AdV disease	No	1.00			1.00			
	Yes	1.79 (0.92 - 3.48)			1.90 (1.00 - 3.63)			
Maximum GvHD stage	0					1.00		
	1,2					0.89 (0.34 - 2.33)		
	3,4					2.31 (1.08 - 4.92)		

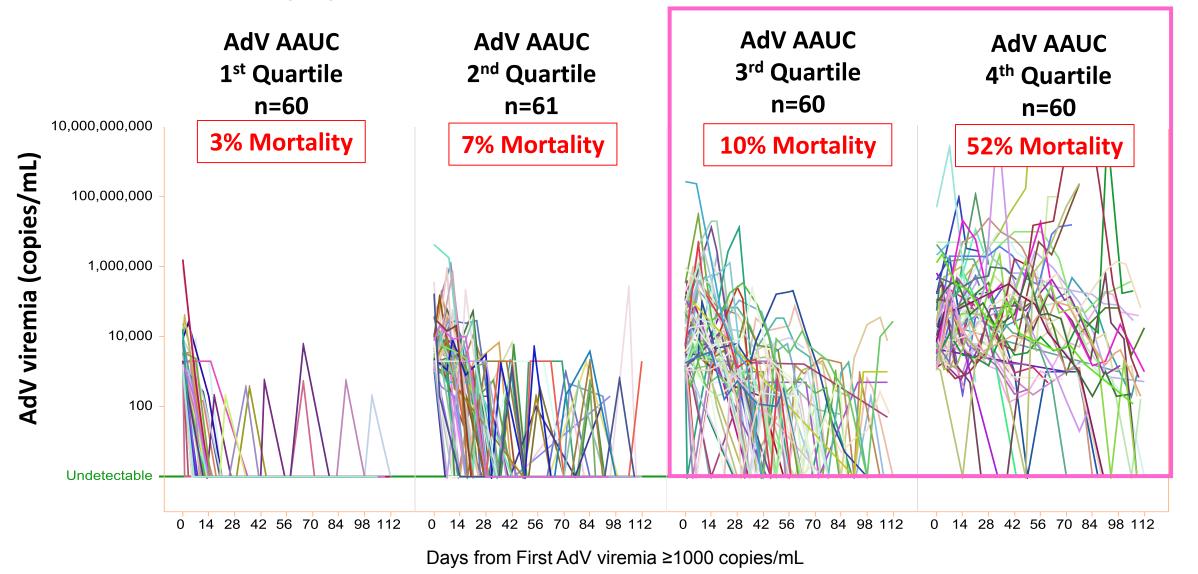
- Associations were independent of lymphocyte immune reconstitution in all models
- Renal replacement therapy (dialysis, possible side effect of IV cidofovir) was also highly correlated with mortality



AdV AAUC₀₋₁₆ Peak & Persistence = Higher Mortality

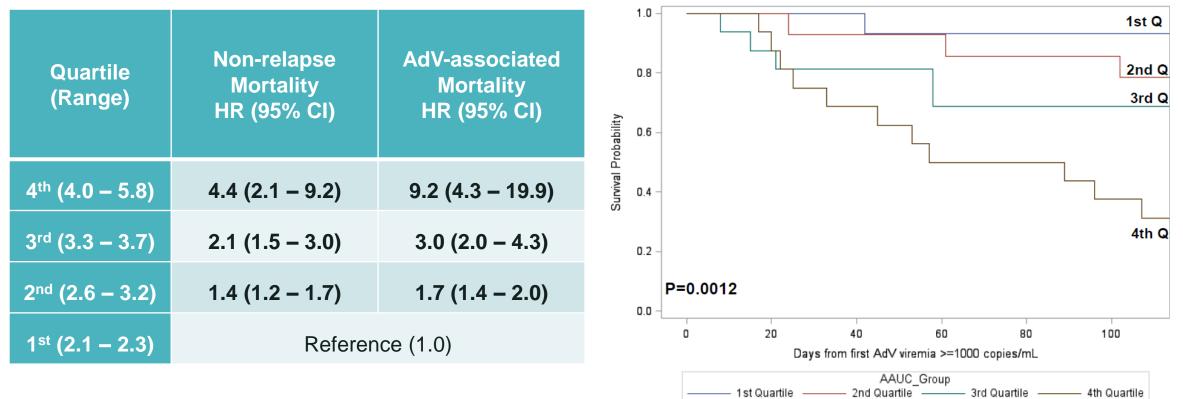


AdV AAUC0-16 Peak & Persistence = Higher Mortality



AdV AAUC₀₋₁₆ **Peak & Persistence = Higher Mortality**

AdV AAUC₀₋₁₆ **Peak & Persistence = Higher Mortality**



Two Independent Datasets: Linking AdV Viral Burden and Mortality after HCT

Lion et al: Adenovirus AAUC after Peds HCT Associated with Mortality MSKCC: Higher Mortality with Higher AdV Viral Burden after HCT

CHIMERIX

These data to be published Q4 2018; to be included as supportive independent data sets for Briefing Package for potential Type C meeting to discuss AdV AAUC as surrogate

AdAPT Is Designed for Success Local Standard of Care (SoC) from AdVance* 2 yr old pt Oral BCV from AdVise 19 days post-HCT 3 yr old pt 41 days post-TCD HCT Adv AAUC₀₋₁₆ = 8.00 4.40 log₁₀ copies/mL[†] 8.00 Adv $AAUC_{0-16} =$ AdV Viremia (log10 copies/mL) 2.03 log₁₀ copies/mL[†] AdV Viremia (log10 copies/mL) 6.00 6.00 4.00 4.00 2.00 2.00 12 16 0 8 12 16 2 8 -4 2 -4 0 WEEK WEEK

AdV AAUC for local SOC – AdV AAUC with BCV = potential difference in AdAPT $4.40 - 2.03 = 2.37 \log_{10}$

*Local standard-of-care may include reduction of immunosuppressants or off-label IV cidofovir \pm Lower limit of detection: 2 log₁₀ copies/mL

Acceptance of Virologic Endpoints by US FDA

CMV:

- 2013: CMV Forum established with representatives from academia / industry / regulatory working group
- Meta-analysis conducted on multiple independent data sets, confirmed correlation with clinical endpoints
- Working group reviewed CMV assays to assure consistent results
- October 2017: CMV viremia endpoint accepted by FDA

AdV:

- The Forum is transitioning to include other viral infections in the transplant setting
- AdVance and other independent data sets are being presented/published which demonstrate correlation of AdV virologic markers and clinical outcome

The Path for Approval for Brincidofovir

<u>EU</u>: AdAPT was designed together with European regulators who have supported the use of a virologic endpoint for this small, prospectively randomized trial

We plan to request a Type C meeting with FDA to discuss growing body of data supporting virologic endpoint for adenovirus There are multiple precedents for FDA acceptance of virologic endpoints to support accelerated or full approvals; most recently, FDA accepted CMV as a virologic endpoint in October 2017. AdVance, together with multiple independent datasets, demonstrates strong correlation of AdV $AAUC_{0-16}$ with overall survival

IV BCV May Provide Opportunity to Explore Prevention and Treatment of Other dsDNA Viral Infections

Viral Family	Viriis		Clinical Efficacy Demonstrated in		
Adenovirus	Adenovirus (AdV)	0.02	1500+ patients w AdV have received BCV		
Polyoma	BK Virus (BKV)	0.13	New data in animal model confirms BCV activity (to be presented at Kidney Week), Ph 2 dose-ranging in planning		
	JC Virus (JCV)	0.045	Oral BCV has been used in ~36 pts with PML or JC viremia IV BCV achieves higher CNS penetration		
Papilloma	Human Papillomavirus (HPV)	17	BCV used in patients in expanded access trials		
	Herpes Simplex Virus 1	0.01	BCV cleared acyclovir-resistant HSV-1 after HCT ¹		
	Herpes Simplex Virus 2	0.02	BCV cleared acyclovir-resistant HSV-2 after HCT ²		
	Varicella Zoster Virus (VZV, HHV3)	0.0004	BCV demonstrated to prevent shingles post HCT ³		
Herpes	Epstein-Barr Virus (EBV, HHV4)	0.03	Anecdotal use in post-HCT viremia and disease		
Viruses	Cytomegalovirus (CMV, HHV5)	0.001	Antiviral activity demonstrated in Ph 2 ⁴ and Ph 3 ⁵ trials		
	Human Herpesvirus 6		Prevention of viremia and disease in subset analysis of Ph 3 HCT		
	Human Herpesvirus 8 0				
Pox	Variola	0.1	Ongoing pivotal animal studies in collaboration with BARDA		
	Vaccinia	0.8	Disseminated vaccinia cleared with BCV treatment ⁶		

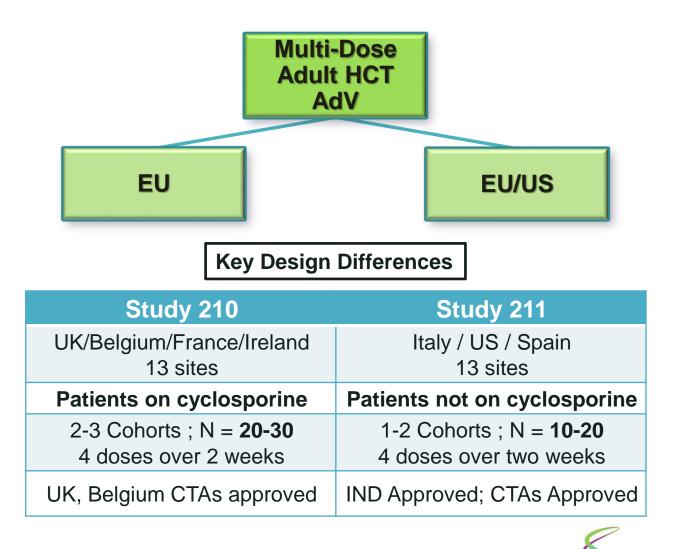
1. Voight S et al. Transpl Infect Dis 2016;18:791–794

2. El-Haddad D et al. Antiviral Res. 2016;134:58-62.

3. Lee YJ et al. Transpl Infect Dis. 2018 Aug 18:e12977. doi: 10.1111/tid.12977. [Epub ahead of print]

5. Marty FM et al. Biol Blood Marrow Transplant 2016;22(3):S23.

6. Lederman E et al. J Infect Dis. 2012;206:1372-85.


IV BCV in Adult HCT With AdV Viremia: Studies 210/211

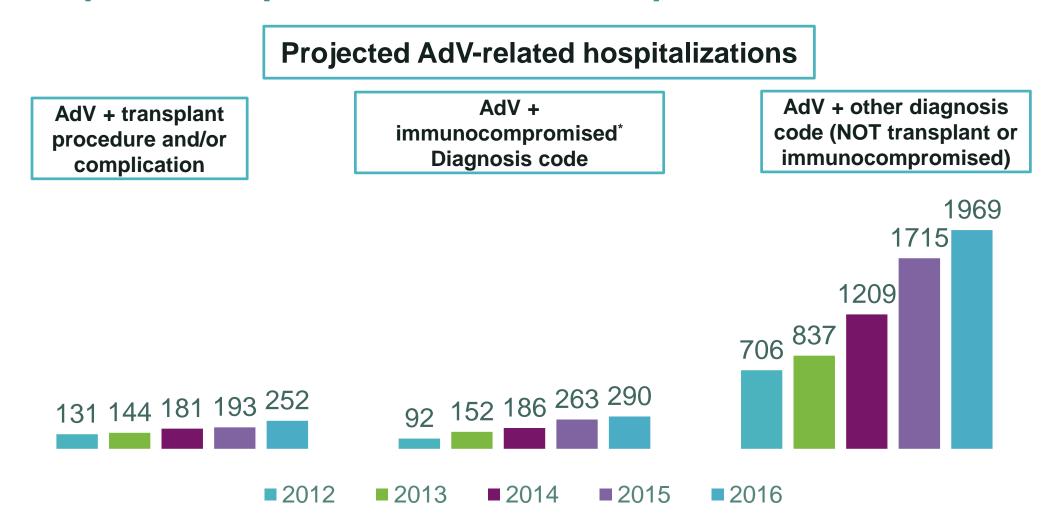
Objectives:

- Confirm AdV virologic response with IV BCV in adult HCT patients
- Demonstrate tolerability of IV BCV in patients

Status:

 Multiple countries / sites now initiated for Studies 210/211, additional sites opening in 2H18

CHIMERIX


58

If Accelerated Approval Achieved with AdAPT, IV BCV Could Be Explored in Additional AdV Prevention or Treatment Scenarios

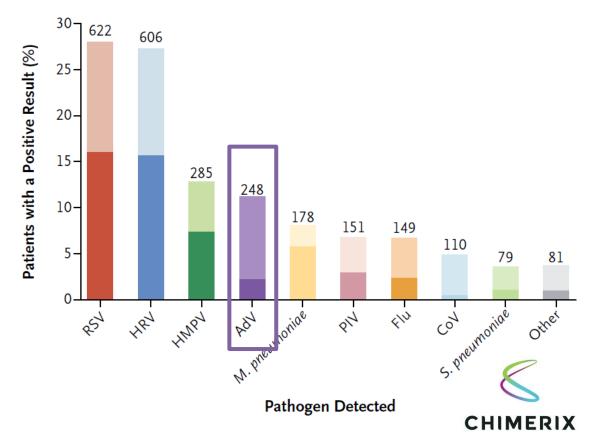
- The lower risk of GI toxicity with IV BCV may allow longer duration of dosing throughout high-risk period
- Pediatric patients are at high risk for multiple DNA virus infections, with adenovirusrelated mortality a particular concern
 - High-level detection of AdV in stool predicts AdV disease after peds allo-HCT¹
- MVP-Peds: placebo-controlled trial of IV BCV in pediatric allo-HCT recipients with AdV detected in stool
 - Primary endpoint of prevention of adenovirus disease allows placebo control
 - Secondary endpoint of prevention of CMV, as high-risk pediatric HCT recipients tend to reactivate AdV earlier than CMV
 - Other secondary endpoints to include prevention of other DNA virus and health outcomes

HCUP: Most U.S. AdV-related Hospitalizations are NOT in Transplant Recipients or Immunocompromised Patients

*AdV+immunocompromised exclude those hospitalizations with discharge diagnoses of "transplant" or "post-transplant complication"

NIS sample is 20%, projected numbers have been multiplied by 5

~12,000 Pediatric Hospitalizations for AdV Annually


- 2,638 eligible children enrolled
 - 51% had underlying condition (asthma 33%, preterm 21%)
 - 21% required intensive care, and 3 (<1%) died
- Pneumonia: 15.7 cases per 10,000 children
- Adenovirus was detected in 11%
 - More common among younger children <5 yo (15%) vs. ≥ 5 yo (3%)
- Hospitalized AdV pneumonia occurs in 1.6 per 10,000 kids in US annually:
 - ~12,000 cases per year

N Engl J Med 2015; 372: 835-45. DOI: 10.1056/NEJMoa1405870

ORIGINAL ARTICLE

Community-Acquired Pneumonia Requiring Hospitalization among U.S. Children

B Specific Pathogens Detected

LAND with AdAPT

Multiple Options for EXPAND

<u>Land</u>

AdAPT

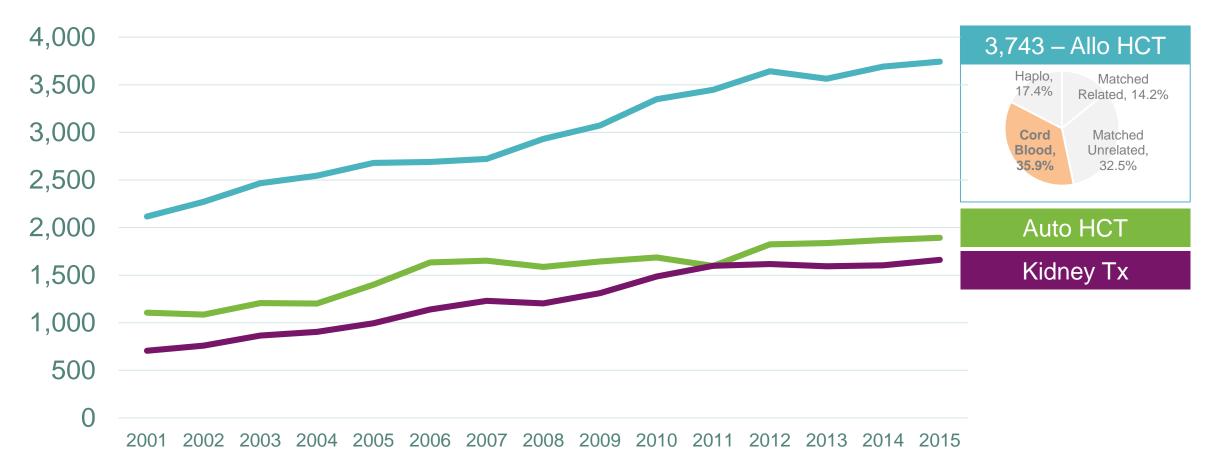
╋

Smallpox

IV BCV:

Complete Studies 210/211

2019


- 3b/4 study of AdV in hospitalized pts
- Dose confirmation for
 - younger age groups
- Dose range finding in BKV (kidney transplant recipients)

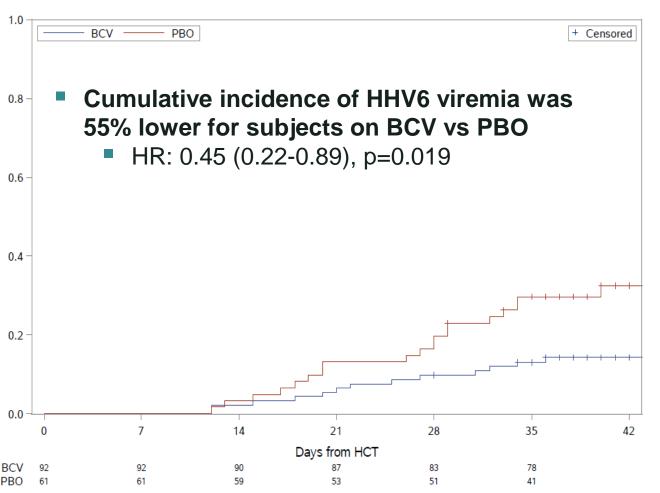
Expand

- HHV6 or other CNS viral infection
- BKV if supported by Phase 2 study

Considering Ex-US/EU Opportunities: Higher Number of Cord Blood Transplants in Japan than in US

Japan Society for Hematopoietic Stem Cell Transplantation, Japanese Society for Clinical Renal Transplantation

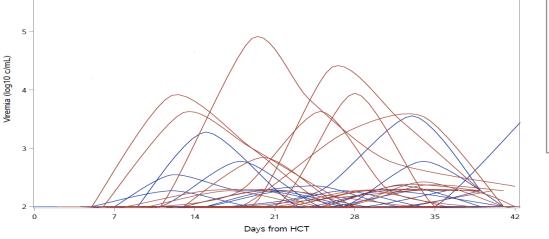
Brincidofovir: Potent Activity Against HHV6

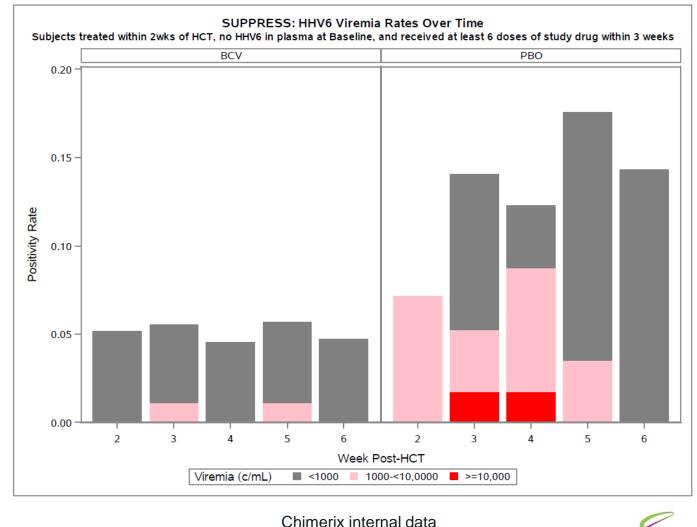

Viral Virus Family		BCV	Cidofovir	Maribavir	Letermovir	Ganciclovir*	Foscarnet	Acyclovir
Adenovirus	Adenovirus (AdV)	0.02	1.3	—	>10	4.5-33	Inactive	>100
Polyoma	BK Virus (BKV)	0.13	115	—	—	>200	Inactive	>200
	JC Virus (JCV)	0.045	>0.1	—	—		Inactive	
Papilloma	Human Papillomavirus (HPV)	17	716	—	—	Inactive	—	Inactive
Herpes Viruses	Herpes Simplex Virus 1	0.01	3.0	Inactive	>10	0.7	92-95	3.8
	Herpes Simplex Virus 2	0.02	6.5	Inactive	>10	2.5	91-96	4.4
	Varicella Zoster Virus (VZV, HHV3)	0.0004	0.5	Inactive	>10	1.3	39.8	3.6
	Epstein-Barr Virus (EBV, HHV4)	0.03	65.6	0.63	>10	0.9	<500	6.2
	Cytomegalovirus (CMV, HHV5)	0.001	0.4	0.31	0.005	3.8	50-800	>200
	Human Herpesvirus 6	0.003	2.7	Inactive	>10	5.8	16	10
	Human Herpesvirus 8	0.02	2.6	Inactive	—	8.9	177	>100
Pox	Variola	0.1	27			—	—	
	Vaccinia	0.8	46	—		>392	Inactive	>144

Potency expressed as EC_{50} = concentration in μ M required to reduce viral replication by 50% *in vitro;* "—" indicates no data. *Valganciclovir is rapidly converted to ganciclovir *in vivo*; ganciclovir is the relevant compound for cell activity studies.

Source: Data are compiled from multiple sources and include multiple materials and methodologies.

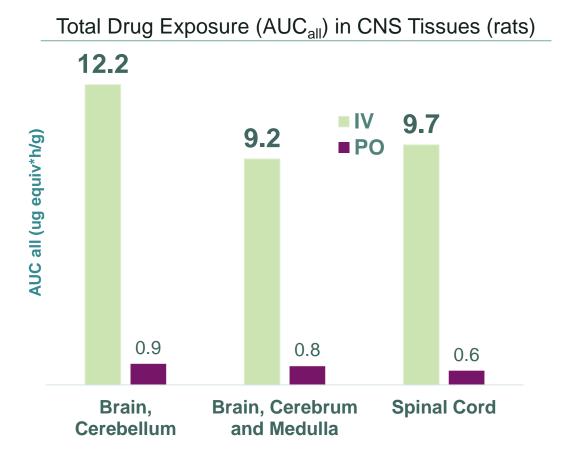
New Data: Oral BCV Prevented HHV6 Viremia and Disease


- An analysis of HHV6 was conducted on plasma from SUPPRESS subjects who:
 - Started blinded study drug in the first
 2 wks post-HCT and
 - Received at least 3 wks BCV or PBO
- BCV n=92 vs PBO n=61
- Cumulative incidence of HHV6 viremia through week 6:
 - BCV: 14/92 = 15%
 - PBO: 19/61 = 31%



CHIMERIX

New Data: Oral BCV Significantly Reduced HHV6 Viremia


- For subjects reactivating HHV6, viral loads were lower in those on BCV (blue) compared to those on PBO (red)
- HHV6 Viremia >1000 c/mL:
 - BCV: 2/92 = 2%
 - PBO: 7/61 = 11%
- HHV6 encephalitis confirmed in 1/149 PBO recipients vs 0/303 BCV recipients

IV BCV: Animal Studies Show More BCV in Difficult-to-reach Compartments Including the Brain

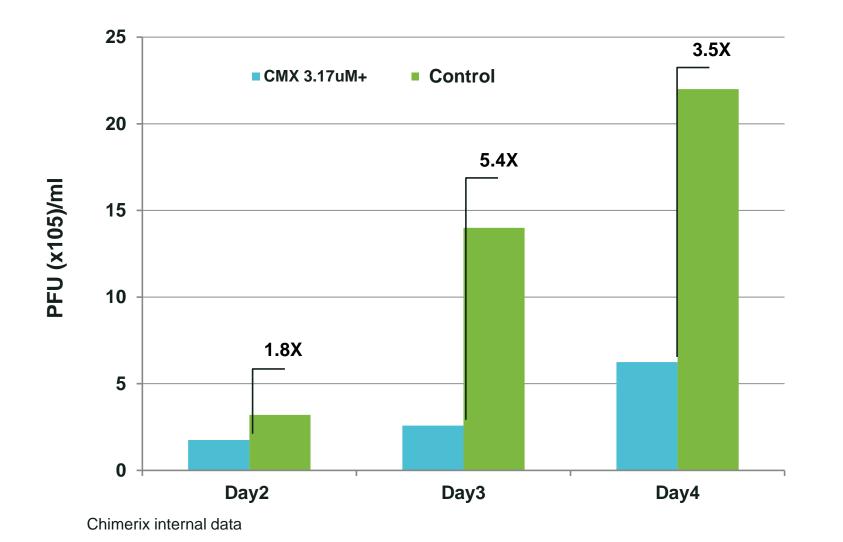
Points to Note

- Higher CNS exposures with IV BCV supports testing for viral infections in the brain, e.g.:
 - HSV encephalitis in newborns and adults
 - HHV6 encephalitis
 - JC virus/PML in transplant recipients or patients with Multiple Sclerosis

Higher drug levels of BCV achieved with IV administration supports evaluation of IV BCV for viral brain infections, such as HHV6 encephalitis or JC virus (PML)

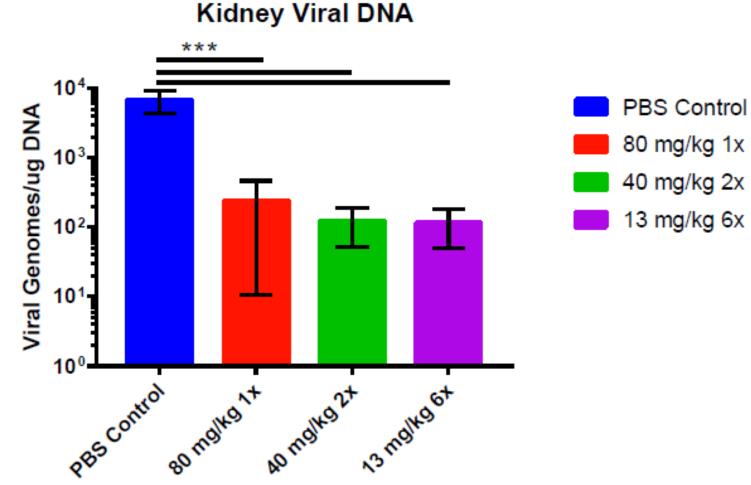
BKV Nephropathy In Kidney Transplant Often Results in Graft Loss

- BKV-associated nephropathy (BKVAN) occurs in up to10% of kidney recipients, with irreversible renal dysfunction in up to 50% of these patients
- Only options currently are return to dialysis (~\$75K/yr) or repeat transplant (>\$250K)


Actuarial renal graft survival in renal recipients with or without BKVAN³

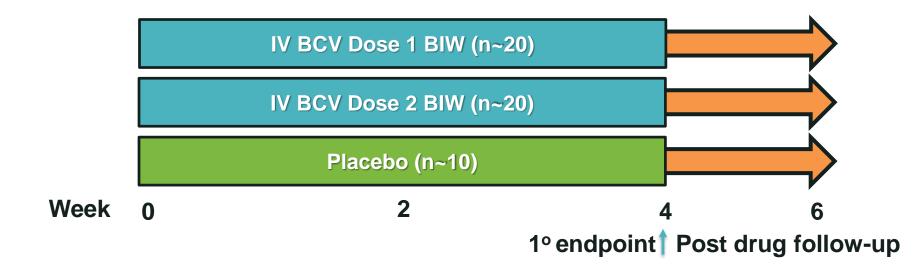
Post-transplant years

A total of 1001 renal and renal/pancreas transplants were performed at a single center between January 1996 and December 2003, with follow-up through September 2004. 41 cases of BKVN were diagnosed during the study period. 1. Hu JH, et al. *Transplant Proc.* 2011;43:3715-3719; 2. Hirsch HH, et al. *Am J Transplant.* 2013;13:179-188; 3. Vasudev B, et al. *Kidney Int.* 2005;68:1834-1839.



New In Vitro Data: BCV Reduced Mouse Polyoma Virus Replication

New Animal Model Data: BCV Demonstrated ~2 log₁₀ Reduction in Virus in Mouse Kidney after Acute Infection



Bars represent mean ± SD; Mann-Whitney test- *** p<0.001

BKV: Potential Proof-of-Concept Study in Kidney Transplant Recipients with BK Viremia

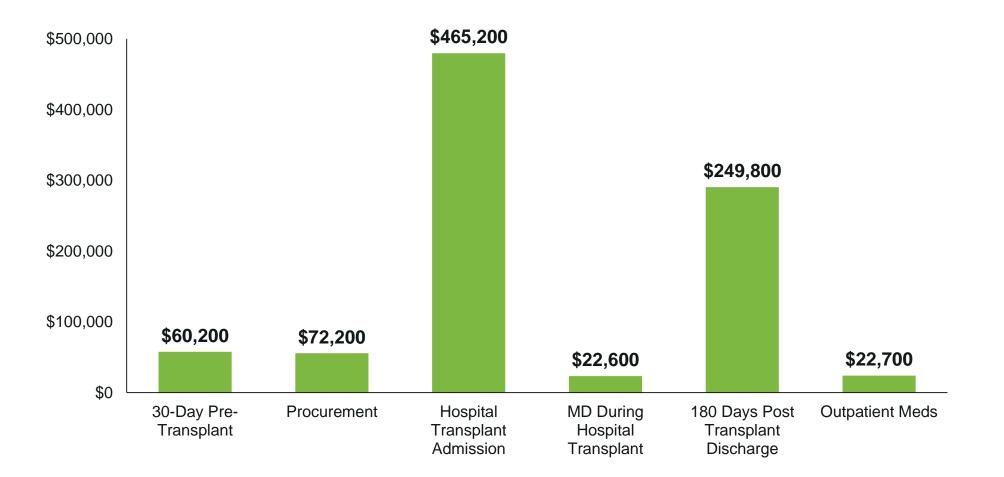
- Objective: demonstrate antiviral effect of IV BCV on BK Virus (Proof-of-Concept)
- Population: Kidney transplant with plasma BKV >1,000 c/mL at screen
- Primary endpoint: BK viremia area under the curve minus baseline (AAUCMB) at Wk 4
 - No extension phase simple, cost effective design for POC

Brincidofovir: Potent Broad Spectrum Antiviral, Multiple Opportunities for Clinical Development of IV BCV

Viral Family	Virus	BCV	Cidofovir	Maribavir	Letermovir	Ganciclovir*	Foscarnet	Acyclovir
Adenovirus	Adenovirus (AdV)	0.02	1.3	—	>10	4.5-33	Inactive	>100
Polyoma	BK Virus (BKV)	0.13	115	—	—	>200	Inactive	>200
	JC Virus (JCV)	0.045	>0.1	—	—	—	Inactive	—
Papilloma	Human Papillomavirus (HPV)	17	716	—	—	Inactive	—	Inactive
Herpes Viruses	Herpes Simplex Virus 1	0.01	3.0	Inactive	>10	0.7	92-95	3.8
	Herpes Simplex Virus 2	0.02	6.5	Inactive	>10	2.5	91-96	4.4
	Varicella Zoster Virus (VZV, HHV3)	0.0004	0.5	Inactive	>10	1.3	39.8	3.6
	Epstein-Barr Virus (EBV, HHV4)	0.03	65.6	0.63	>10	0.9	<500	6.2
	Cytomegalovirus (CMV, HHV5)	0.001	0.4	0.31	0.005	3.8	50-800	>200
	Human Herpesvirus 6	0.003	2.7	Inactive	>10	5.8	16	10
	Human Herpesvirus 8	0.02	2.6	Inactive	—	8.9	177	>100
Pox	Variola	0.1	27	—				
	Vaccinia	0.8	46	_	_	>392	Inactive	>144

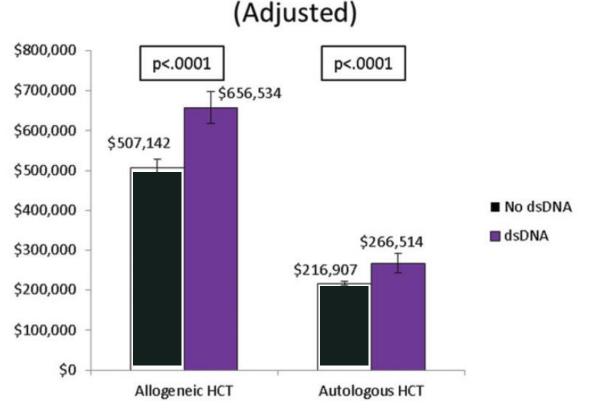
Potency expressed as EC50 = concentration in μ M required to reduce viral replication by 50% in vitro; "—" indicates no data. *Valganciclovir is rapidly converted to ganciclovir in vivo; ganciclovir is the relevant compound for cell activity studies.

Source: Data are compiled from multiple sources and include multiple materials and methodologies.



MARKET OPPORTUNITIES FOR BRINCIDOFOVIR

Kevin Reeves Vice President, Commercial


Estimated Average Billed Charges for Allo-HCT in 2017: ~\$900,000

\$150,000 Difference between Cost of Allo-HCT with or without dsDNA Viral Infection

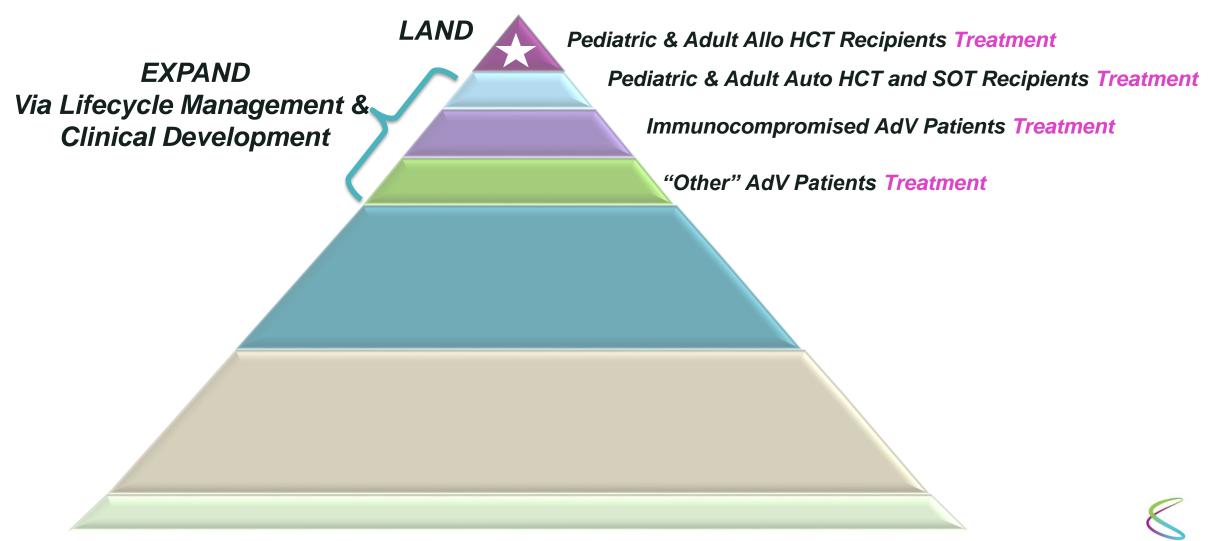
- In both allo-HCT and auto-HCT, dsDNA viral infection have a substantial impact on the average reimbursements for the transplant
- Specifically for allo-HCT, ~\$150,000 difference for a single dsDNA viral infection in the first year post-HCT

Annualized total reimbursements (Adjusted)

ISPOR EU 2018

BCV Commercial Considerations

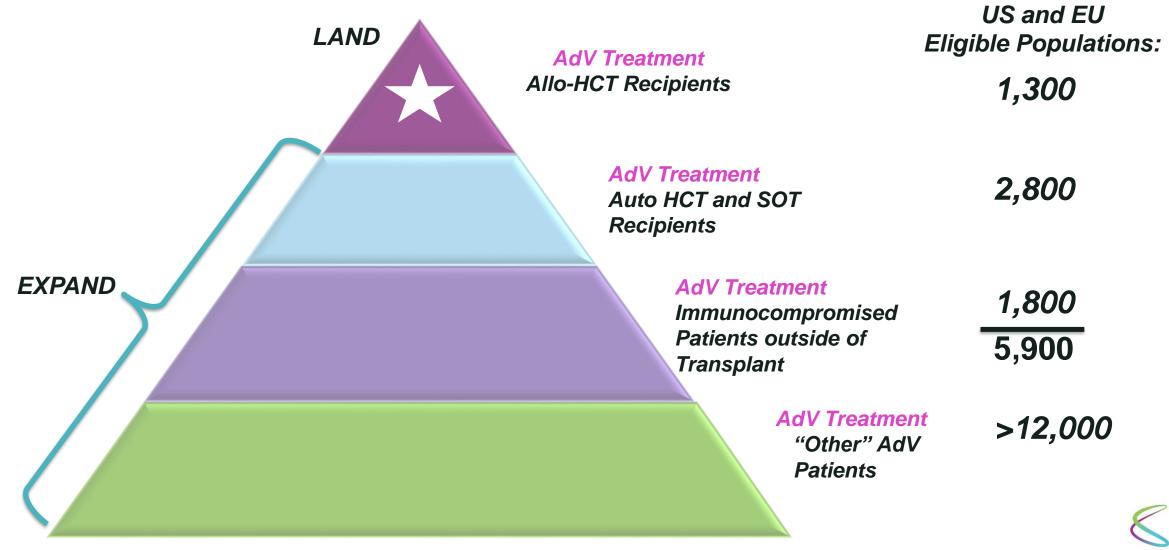
Adenovirus:


- AdV is an orphan indication with no competition
- AdV is a life-threatening condition in pediatric and adult transplant recipients
- HCT recipients have to-date been considered a significant investment by payers

Brincidofovir (BCV):

- First indication is targeting a treatment rather than prophylaxis
 - No patients exposed who will not reactivate virus
- Pricing likely to be based on a course of therapy as determined by AdAPT data

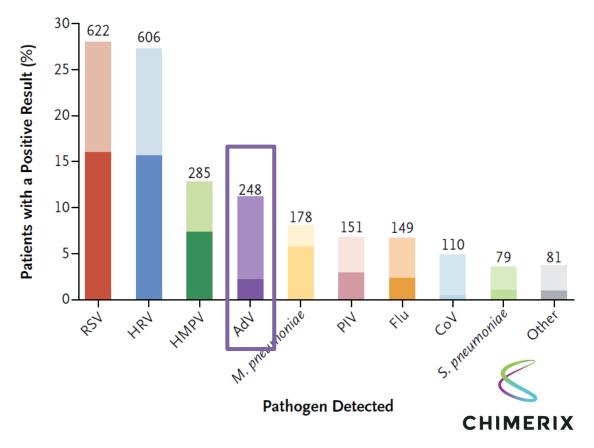
Building Full Potential Value in Adenovirus: "Land and Expand"



Building Full Potential Value in Adenovirus: "Land and Expand"

Building Potential Launch Value in AdV through "Land and Expand"

~12,000 Pediatric Hospitalizations for AdV Annually


- 2,638 eligible children enrolled
 - 51% had underlying condition (asthma 33%, preterm 21%)
 - 21% required intensive care, and 3 (<1%) died
- Pneumonia: 15.7 cases per 10,000 children
- Adenovirus was detected in 11%
 - More common among younger children <5 yo (15%) vs. ≥ 5 yo (3%)
- Hospitalized AdV pneumonia occurs in 1.6 per 10,000 kids in US annually:
 - ~12,000 cases per year

N Engl J Med 2015; 372: 835-45. DOI: 10.1056/NEJMoa1405870

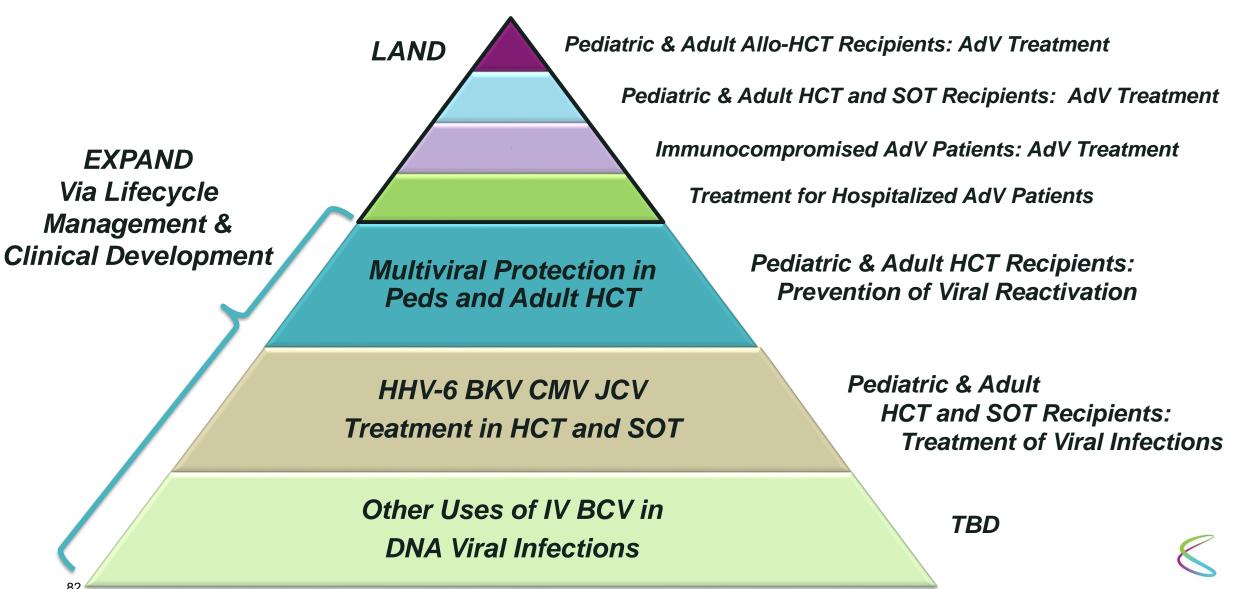
ORIGINAL ARTICLE

Community-Acquired Pneumonia Requiring Hospitalization among U.S. Children

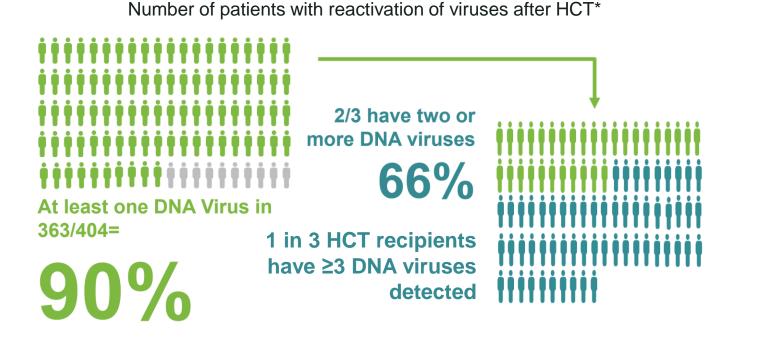
B Specific Pathogens Detected

Global Opportunities in Stem Cell and Solid Organ Transplant

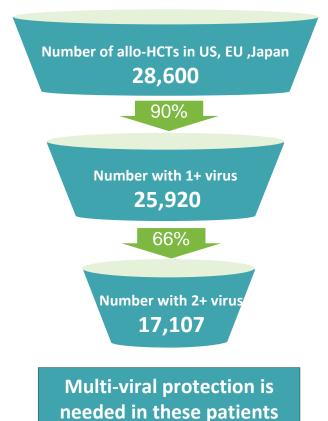
US	EU 28-40	Japan	Total
8,700	16,200	3,700	28,600
15,100	24,800	1,800	41,700
23,800	41,000	5,500	70,300
20,600	21,100	1,648	43,348
8,100	8,000	438	16,538
6,000	4,900	124	11,024
34,700	34,000	2,210	70,910
58,500	75,000	7,710	141,210
	8,700 15,100 23,800 20,600 8,100 6,000 34,700	US EU 28-40 8,700 16,200 15,100 24,800 23,800 41,000 20,600 21,100 8,100 8,000 6,000 4,900 34,700 34,000	US EU 28-40 Japan 8,700 16,200 3,700 15,100 24,800 1,800 23,800 41,000 5,500 20,600 21,100 1,648 8,100 8,000 438 6,000 4,900 124 34,700 34,000 2,210


US HCT: 2015 figures from CIBMTR. Auto-HCT are increased by 20% to account for under-reporting to CIBMTR. US SOT: 2017 figures from Organ Procurement and Transplantation Network (OPTN)

EU HCT: JR Passweg, et al., 2016 EBMT Transplant Activity Survey (includes 40 EU countries; non EU countries removed). EU SOT: EDQM's Newsletter Transplant – Internat'l Figures on Donation & Transplantation 2017 (includes 28 EU countries).


CHIMERIX

Japan: Clarivate Japan assessment (HCT for 2015; Kidney/Liver for 2016; Other SOT for 2015)


Building Potential Value for Oral and IV BCV: "Land and Expand"

Allo-HCT Patients Are at Risk of Multiple DNA Virus Infections

Considerations for Clinicians

Reactivation of multiple viruses is very common in HCT patients

Potential for IV BCV in Other DNA Virus Infections: BK Virus

- Both SOT and HCT recipients are at risk for BKV infections
 - HCT: hemorrhagic cystitis requiring hospitalization for pain control
 - Kidney transplant recipients: BKV associated nephropathy with risk of graft loss and a return to dialysis or wait-list for re-transplant
- No approved therapy for treatment or prevention
- Reported incidence:
 - 16% of Allo-HCT recipients develop BKV hemorrhagic cystitis
 - Up to 10% of kidney transplant recipients develop BKV viremia in the first year posttransplant

BK Patient Potential HCT ~4,600

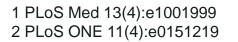
BK Patient Potential SOT ~5,300

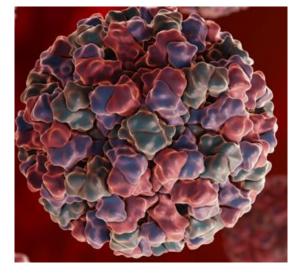
Epi rates: Hirsch et al. Am J Transplantation 2013; Rorije et al. ASBMT 2014;

CMRX: Advancing BCV Toward High Value Opportunities

Program	Indication	Pre-clinical	Phase 1	Phase 2	Phase 3	Est'd patients in U.S. and EU
Short-course Oral BCV	AdV Treatment					~ 5,900
	Smallpox					1.7M course Procurement*
	AdV					~ 5,900
IV BCV	BK virus	Dose-Rangi	ng Planned			~9,900
	Multi-viral	Planned				~17,000
	HHV-6					TBD

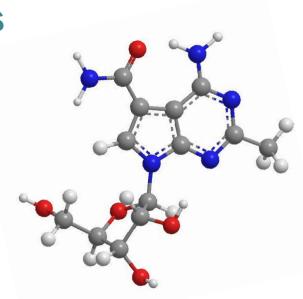
*Based on previous 2015 RFP request


CMX521 FOR NOROVIRUS


Randall Lanier, PhD Chief Scientific Officer

Human Norovirus Infections Are Prevalent and Costly

- Worldwide: ~700 million cases of norovirus each year (~20 million in U.S.)
 - ~219,000 deaths per year¹
 - 15-20 percent of HCT and SOT patients get NV in first year
 - associated with chronic, severe diarrhea and graft rejection
- Economic toll of norovirus is >\$60 Billion per year²
 - \$4.2B in direct health system costs; ≈56B in productivity losses
 - >60% of outbreaks in US occur in long-term care facilities
- Nothing approved for prevention or treatment
 - Norovirus genetic diversity is a significant hurdle for antivirals and vaccines
 - Ideal therapy should work against all strains

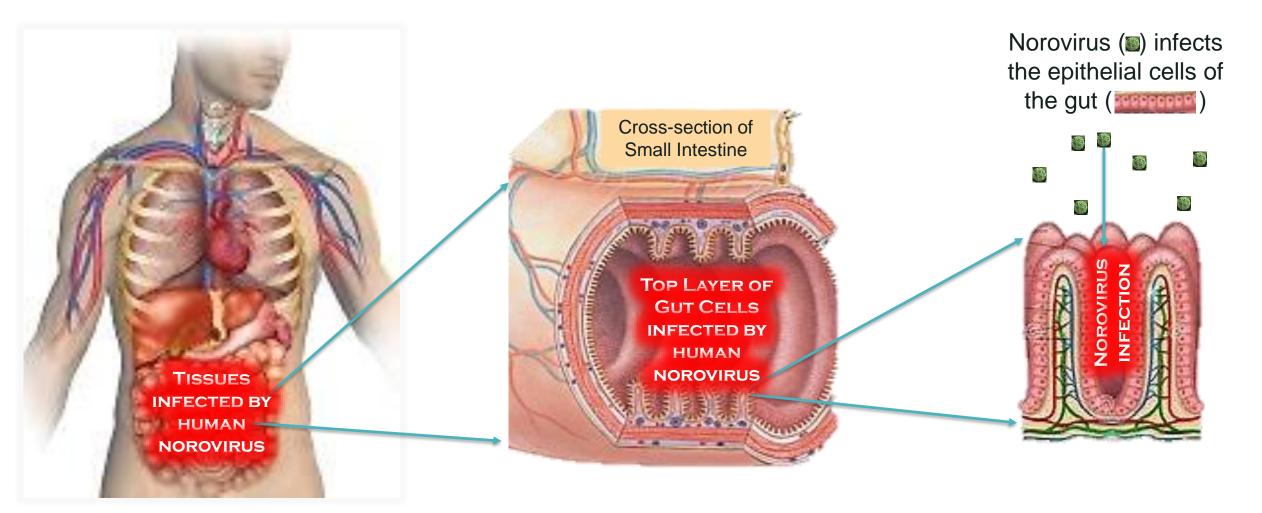



CMX521: A Small Molecule Antiviral for Norovirus

- Nucleoside with pan-genotype activity
 - Targets region of virus that is common to all strains
- Safety profile looks very promising
 - Phase 1 data showed single doses were safe and well-tolerated
- Patent protection until 2036

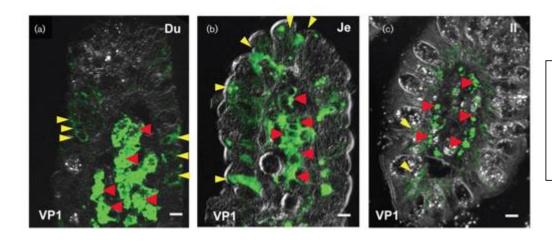
CMX521 Update: Single Ascending Dose Study

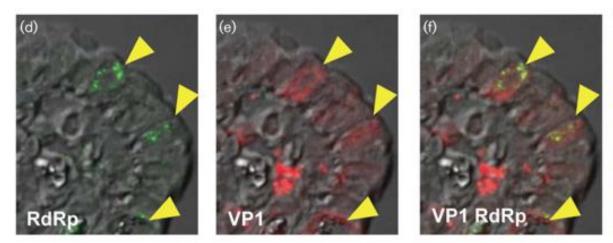
- CMX521 plasma exposures increased in a less-than-proportional manner with escalating single oral dose administration
- Single oral doses of CMX521 up to 2400 mg were generally well-tolerated. No safety concerns were identified
- These data support continuing the development of CMX521 for human norovirus infections

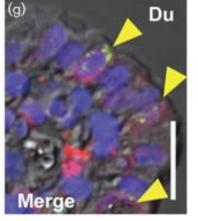


Discovery Virology Goal:

"Deliver effective concentrations of the active antiviral to the right place without causing toxicity"

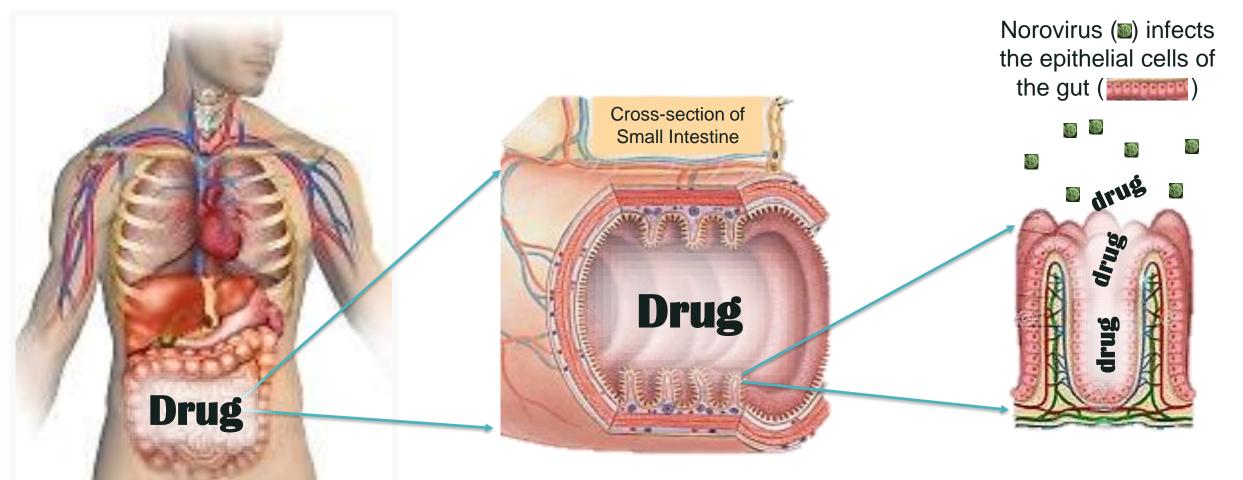

Norovirus Infects Cells Lining the Gut in Humans


- Human norovirus replicates in "enterocytes" lining the gut
- > Primary target cells for a norovirus therapeutic in the gut epithelia



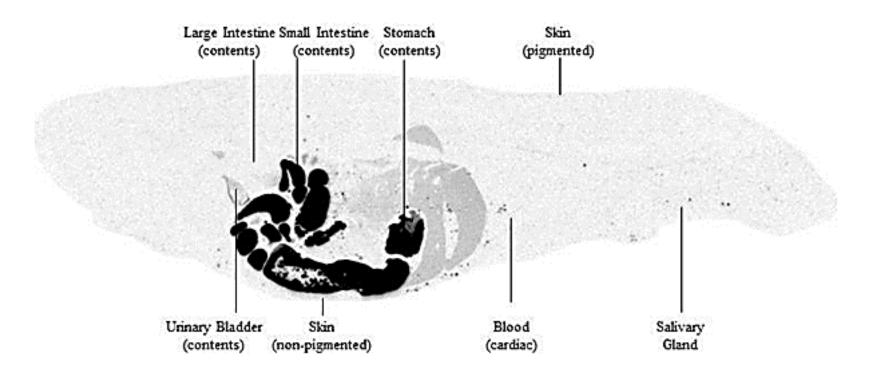
Human Norovirus Replicates in Enterocytes Lining the Gut

Detection of NV in the duodenum (a), jejunum (b) and ileum (c). Infection in enterocytes (yellow arrows) and GALT of lamina propria (red arrows).



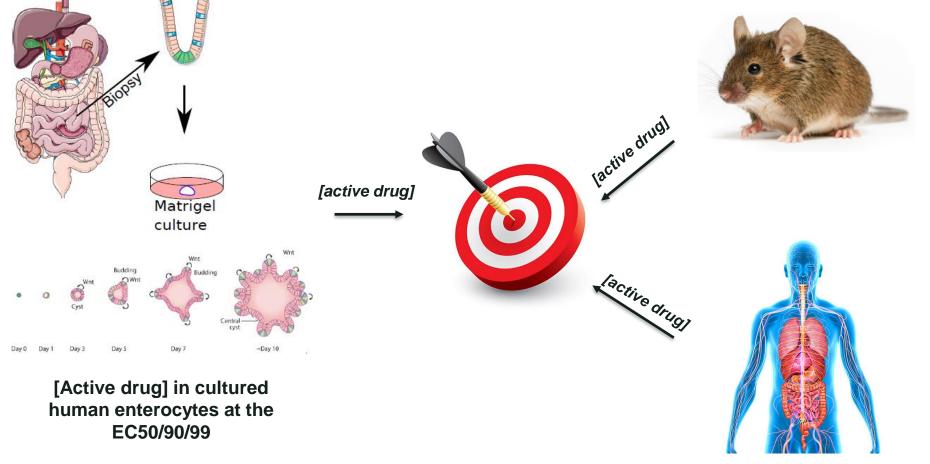
Colocalization of RdRp and VP1, indicating replication in enterocytes.

Karandikar et al. 2016 (97)


Drug Preferentially Delivered to Target Cells with Oral Dosing

- > More drug in target sites improves efficacy
- Less drug in non-target sites improves safety

Oral CMX521 Preferentially Delivered Drug to Gut in Rats



4 hours after Oral administration of 50 mg/kg [¹⁴C]CMX521

Radioactive drug preferentially contained in intestines after oral dosing

Opportunity to Find an "Effective" Dose in Phase 1 and De-Risk Later Stage Clinical Development

[Active drug] that prevents norovirus disease in mice

[Active drug] in humans at well-tolerated doses

Two Promising Scenarios for Norovirus Antivirals

- Treatment of Chronic Norovirus Infection
 - Transplant recipients and other symptomatic immunocompromised patients
 - Asymptomatic shedders
 - Food handlers, hospital/healthcare workers who may be source of outbreaks

- Prevention of Acute Norovirus Infection
 - Protect individuals from a potential outbreak (hospitals, long-term care facilities etc.)
 - Significantly reduce the economic impact of outbreaks

CMRX: A Robust Pipeline for High Value Opportunities

Program	Indication	Pre-clinical	Phase 1	Phase 2	Phase 3	Est'd Market Opportunity
Short-course	AdV Treatment					~ 5,900
Oral BCV	Smallpox					1.7m courses Procurement*
	AdV					~ 5,900
IV BCV	BK virus	Dose-Rangii	ng Planned			~9,900
	Multi-viral	Plan	ned			17,000
	HHV-6					TBD
CMX521	Norovirus					~700 MM cases of norovirus each year worldwide

- Chimerix remains well-capitalized with \$196M at the end of 2Q2018
- Patent protection into 2034 for brincidofovir, and 2036 for CMX521

*Based upon previous 2015 RFP request